Directions: Describe the function, $f(x)$ (exponential, logarithmic, or neither), how you know why it is that function and then find points for its inverse, $\mathbf{g}(\mathbf{x})$.
1)

X	$f(x)$
8	3
16	4
32	5
64	6

2)

X	$\mathrm{f}(\mathrm{x})$
-3	$1 / 8$
-2	$1 / 4$
-1	$1 / 2$
0	1

Directions: Determine if $f(x)$ and $g(x)$ are inverses.

3. $\mathrm{f}(\mathrm{x})=3 \cdot \log _{5} \mathrm{x}$	
$\mathrm{g}(\mathrm{x})=5^{3 \mathrm{x}}$	4. $f(x)=10^{5 x}$
	$g(x)=\frac{1}{5} \cdot \log x$

Directions: Find the inverse of the given function.

5. $h(x)=3^{\frac{x}{10}}$
6. $m(x)=6 \cdot \log _{5} x$

Answers to 1.1 CA \#1

1. Logarithmic because the x -values are changing multiplicatively.

X	$f(x)$
3	8
4	16
5	32
6	64

2. Exponential because the y-values are changing multiplicatively.

X	$f(x)$
$1 / 8$	-3
$1 / 4$	-2
$1 / 2$	-1
1	0

3. Not inverses
4. Inverses
5. $h^{-1}(x)=10 \cdot \log _{3} x$
6. $m^{-1}(x)=5^{\frac{x}{6}}=5^{\frac{1}{6} x}$
