Directions: Describe the function, $f(x)$ (exponential, logarithmic, or neither), how you know why it is that function and then find points for its inverse, $\mathbf{g}(\mathbf{x})$.
1)

X	$f(x)$
$1 / 27$	-3
$1 / 9$	-2
$1 / 3$	-1
1	0

2)

X	$f(x)$
-3	$1 / 64$
-2	$1 / 16$
-1	$1 / 4$
0	1

X	$G(x)$

Directions: Determine if $f(x)$ and $g(x)$ are inverses.
3. $f(x)=10 \cdot \log _{3} x$
4. $f(x)=7^{5 x}$
$g(x)=3^{\frac{1}{10} \mathrm{x}}$
$g(x)=0.2 \cdot \log _{7} x$

Directions: Find the inverse of the given function.

5. $h(x)=2^{\frac{1}{8} x}$
6. $m(x)=4 \cdot \log x$
7. Logarithmic because the x -values are changing multiplicatively.

X	$\mathrm{f}(\mathrm{x})$
-3	$1 / 27$
-2	$1 / 9$
-1	$1 / 3$
0	1

2. Exponential because the y-values are changing multiplicatively.

X	$f(x)$
$1 / 64$	-3
$1 / 16$	-2
$1 / 4$	-1
1	0

3. Inverses
4. Inverses
5. $h^{-1}(x)=8 \cdot \log _{2} x$
6. $m^{-1}(x)=10^{\frac{x}{4}}=10^{\frac{1}{4} x}$
