AP Precalc

2.15 Semi-Log Plots

2.15 Notes

When Sully is ready to retire, he has plans on moving to New York City to become a butcher. In fact, he wants to open his own butcher shop, "The New York Metzgerei," where he can sell his signature product: **Sullamy Picante**! Sully has to cook the meat and then let it cool while recording the temperature during the production process. One day, Sully observes the following temperatures:

Time (min)	10	14	20	22	26	30	36	40	42	44
Temperature (degrees above room temp in °F)	51	41	30	26	21	17	11	8	6	5

What type of function does this model?

What happens to an exponential function on semi-log graph?

Find a regression equation to model the above exponential function:

Take the log and rewrite the equation. What kind of function do you have now?

Complete the table:

				2 · · · · · · · · · · · · · · · · · · ·						
Time (min)	10	14	20	22	26	30	36	40	42	44
Log (Temp)										

To "straighten" the data, take the common log of each of the temperatures. (Log $L_2 \not \to L_3)$

Plot the new graph. What do you notice?

Find a linear regression model of the new data.

Complete the table to find $\log y$, then find a linear regression model of $(x, \log y)$.

2.15 Semi-Log Plots

2.15 Practice

CALCULATOR ACTIVE. Answer the questions pertaining to the given data.

4. a. Plot the following data on both graphs below.

x	2	4	5	8	9		
у	7	15	23	77	115		
			+				
			E				
	_		E				
			-	+++		++++	+++-
	_		+				
			E				
	_		F			++++	
				+++		++++	+++
	-		+				
			F				
	-		F				
						++++	
 	-		+				+++-

- b. Find a regression equation for the above data.
- c. Take the log of both sides and use log rules to create a linear function.
- d. Complete the table to find log *y*.

x	2	4	5	8	9
у	7	15	23	77	115
log y					

- e. Find a linear regression equation for $(x, \log y)$.
- 5. a. Plot the following data on both graphs below.

							_
	x	1	3	4	5	7	
	у	65.0	32.5	16.3	8.2	1.0	
				+			
				E			
				E			
				T			
				E			
		-		1			
				E			
_		-		F			
-		-		+	+ $+$ $+$		\rightarrow

- b. Find a regression equation for the above data.
- c. Take the log of both sides and use log rules to create a linear function.
- d. Complete the table to find log *y*.

x	1	3	4	5	7
у	65.0	32.5	16.3	8.2	1.0
log y					

e. Find a linear regression equation for $(x, \log y)$.

6. a. Plot the following data on both graphs below.

- b. Find a regression equation for the above data.
- c. Take the log of both sides and use log rules to create a linear function.

d. Complete the table to find $\log y$.

x	1	3	4	5	7
у	10.5	46.3	97.2	204.2	900.5
log y					

e. Find a linear regression equation for $(x, \log y)$.

2.15 Semi-Log Plots

2.15 Test Prep

7. The table gives values for a function f at selected values of m. Which of the following graphs could represent these data in a semi-log plot where the vertical axis is logarithmically scaled.

m	1	2	3	4	5
f(m)	18	32.4	58.3	104.9	188.9

(B)

(A)

(C)

(D)

