AP Precalculus
3) $\log _{25} 125=\frac{3}{2}$

$$
25^{\frac{3}{2}}=125
$$

4) $10^{3}=1000$ $\log 1000=3$
5) $16^{\frac{5}{2}}=1024$

$$
\log _{16} 1624=\frac{5}{2}
$$

6) $10^{-2}=\frac{1}{100}$

$$
\log \frac{1}{100}=-2
$$

13) Logarithmic Scale of Base 2

2.9 Logarithmic Expressions

2.9 Test Prep

The Richter Scale is a common way of measuring earthquakes around the world. The scale measures the amplitude of the waves from the seismic activity. The Richter Scale uses a logarithmic scale of base 10 . Since it uses this scale it means that each order of magnitude is 10 times greater than the previous one. So a 6.0 earthquake is ten times intense then a 5.0 earthquake.

14. Which statements most accurately describes how much more intense Earthquake C was than Earthquake A.
a. Earthquake C is 5 times more intense.
b. Earthquake C is 5×10 or 50 times more intense.
c. Earthquake C is 10^{5} or 100,000 more intense.
d. Earthquake C is $\log 5$ times more intense.

$$
\begin{aligned}
& 8.5-3.5=5 \\
& \text { But IT IS } 10 \text { time } \\
& \text { mole for each } \\
& \text { so its } 10.10 .10 \cdot 10.10 \\
& 0 \text { or } 10^{5}=100,000
\end{aligned}
$$

$$
\text { a. Cartnquake C is log } 5 \text { times more intense. }
$$

15. Which of the following statements is true.
a. The increase in intensity from Earthquake A to B is greater than the increase in intensity from

Earthquake B to C.
b. The increase in intensity from Earthquake A to B is less than the increase in intensity from Earthquake B to C.
c. Earthquake B is as many times more intense to Earthquake A, as Earthquake C is as many times Indore intense to Earthquake B.

© The Algebras from FlippedMath.com 50

