
Write your questions and thoughts here!

Holes

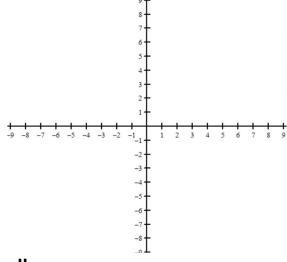
Example 1:

Hole(s):

Limit Notation:

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to$$

As x approaches 3 from the left the f(x)...


 $\lim_{x \to 3^+} f(x) =$

As x approaches 3 from the right the f(x)...

Example 2:

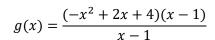
$$g(x) = \frac{10x + 30}{x^2 + x - 6}$$

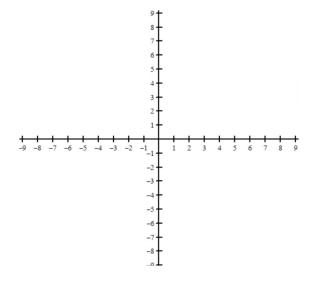
Limit Notation of Hole(s):

Numerically

As x approaches -3 from the left the g(x)...

x	g(x)
-3.1	
-3.01	
-3.001	
-3.0001	


As x approaches -3 from the right the g(x)...


x	g(x)
-2.9	
-2.99	
-2.999	
-2.9999	

Write your questions and thoughts here!

Example 3:

Can look like polynomials!

Holes

Let f be the rational function $f(x) = \frac{N(x)}{D(x)}$. The holes of the rational function occur at all common factors whose multiplicity in the numerator is greater than or equal to the the multiplicity in the denominator.

Multiplicity

Example 4:

$$h(x) = \frac{(x-2)^2}{x^2 + 4x - 12}$$

Domain: Vertical Asymptote(s):

Hole(s): Horizontal Asymptote:

Zero(s): End Behavior:

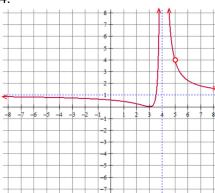
AP Precalculus

Find the hole(s) of the following rational function if one exists.

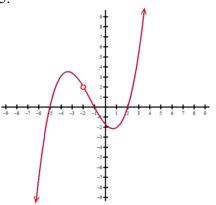
1.
$$f(x) = \frac{x^2 + 3x}{x^2 - 9}$$

2.
$$d(t) = \frac{t^2 + t - 20}{t + 5}$$

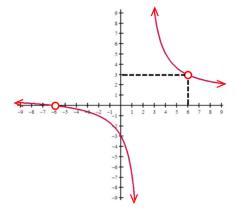
3.
$$h(x) = \frac{(x+5)^2}{x^2+8x+15}$$


Hole(s):

Hole(s):


Hole(s):

State the hole(s) of the following rational functions. Use limit notation.


4

5

6.

Limit Notation Hole(s):

Limit Notation Hole(s):

Limit Notation Hole(s):

CALCULATOR ACTIVE Complete the table to answer the following.

7. $f(x) = \frac{x^2 - 16}{x - 4}$

x	3.9	3.99	3.999	4	4.001	4.01	4.1
f(x)							

Hole:

Limit Notation of Hole:

CALCULATOR ACTIVE Complete the table to answer the following.

8.
$$f(x) = \frac{x^2 - 2x - 8}{4x + 8}$$

x	-2.1	-2.01	-2.001	-2	-1.999	-1.99	-1.9
f(x)							

Hole:

Limit Notation of Hole:

Use the table of the rational function d to find the following.

9.

d(t)
4.134
4.15
4.1893
4.1998
undefined
4.2014
4.231
4.305
4.37

a. Find $\lim_{t \to -3^-} d(t) =$

b. Find $\lim_{t \to -3^+} d(t) =$

c. As t approaches negative three from the left the d(t)...

d. As t approaches negative three from the right the d(t)...

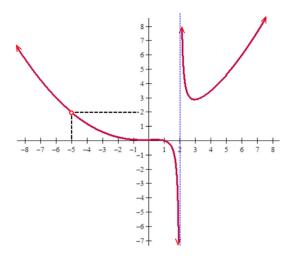
Use the graph of the rational function f to find the following.

10.

a.
$$f(6) =$$

b.
$$f(2) =$$

$$c. \lim_{x \to -5^-} f(x) =$$

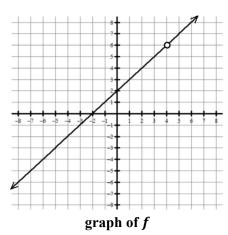

$$d. \lim_{x \to -5^+} f(x) =$$

$$e. \lim_{x \to 2^{-}} f(x) =$$

$$f. \lim_{x \to 2^+} f(x) =$$

g.
$$\lim_{x \to -\infty} f(x) =$$

$$h. \lim_{x \to \infty} f(x) =$$


i. Domain =

Multiple Choice

11. The function f is given by $f(x) = \frac{x^2 - 9}{x^2 + 8x + 15}$. Which of the following describes the function f?

- (A) There is a hole at x = 5.
- (B) There is a hole at x = -5.
- (C) There is a hole at x = 3.
- (D) There is a hole at x = -3.

For questions 12-13 use the graph of f.

- 12. The figure shows the graph of a function f. Which of the following could be an expression for the f(x)?
 - (A) $\frac{(x+2)(x-4)}{(x+2)}$
 - (B) $\frac{(x-2)(x+4)}{(x-2)}$
 - (C) $\frac{(x+2)(x-4)}{(x-4)}$
 - (D) $\frac{(x-2)(x+4)}{(x+4)}$
- 13. The figure shows the graph of a function f. Which of the following must be true?
 - (A) f(2) = 0
 - (B) $\lim_{x \to 4^+} f(x) = \infty$
 - (C) $\lim_{x \to 4^+} f(x) = 3f(0)$
 - (D) f(-2) + f(0) = 0