1.11B Polynomial Long Division and Slant Asymptotes

AP Precalculus

Divide the following using long division or synthetic division.

1.
$$\frac{3x^{3}-4x^{2}-3}{x^{2}+5x+1}$$
 $3x - 19$
 $x^{a} + 5x + 1$ $3x^{3} - \frac{1}{2}x^{2} + 0x - 3$
 $-(3x^{3} + 15x^{2} + 3x)$
 $-19x^{a} - 3x - 3$
 $-(-19x^{a} - 95x - 19)$
 $9ax + 16$
 $3x - 19 + \frac{92x + 16}{x^{3}+5x+1}$

2.
$$\frac{x^{3}-4x^{2}+6x-4}{x-2}$$

$$\frac{2}{3} - \frac{1}{2} - \frac{4}{3} - \frac{4$$

Use the graph of *f* to write the equation of the slant asymptote. $q = \frac{1}{2} \times -1$ $y = -\frac{2}{5}x - 1$ 3. 4. Determine if the following functions have a horizontal asymptote, slant asymptote, or neither. 6. $f(x) = \frac{2x^4 + x^2 + 1}{3x^4 - 2x^2 + 5x}$ 7. $f(x) = \frac{x^3 + 5x^2 + x + 2}{3x^4 - 2x^3 + 2x^2 - 3}$ 5. $f(x) = \frac{4x^5 - 3x^3 + 4x + 1}{5x^3 - 2x^2 + 1}$ y= 3 y = O Circle one: Circle one: Circle one: The graph of f has a horizontal The graph of f has a horizontal The graph of *f* has a horizontal asymptote. asymptote. asymptote. The graph of *f* has a slant asymptote. The graph of *f* has a slant asymptote. The graph of *f* has a slant asymptote.

 $\begin{array}{c} The graph of f does not have a \\ horziontal or slant asymptote. \end{array}$

The graph of f does not have a horziontal or slant asymptote.

The graph of f does not have a horziontal or slant asymptote.

8.
$$f(x) = \frac{x^3 - 2x^2 - 4x + 1}{x^2 - 2x + 1}$$

 $x^3 - 2x + 1 \int x^3 - 3x^3 - 4x + 1 \int -(x^3 - 3x^3 - 4x + 1) \int -5x + 1$
 $(y = x)$
10. $f(x) = \frac{4x^2 + 12x - 6}{2^{2x+1}}$
 $(y = x)$
11. $f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$
11. $f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$
11. $f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$
 $(y = x - 15)$
11. $f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$
 $(y = x - 15)$
11. $f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$
 $(y = x - 15)$
11. $f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$
 $(y = x - 15)$
11. $f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$
 $(x + 2x)(x - 3)$
 $f(x) = \frac{3x^3 - 12x}{x^2 - 2x - 8}$
 $(x - 4)(x + 3)$
12. $3x (x + 3)(x - 3)$
 $f(x) = \frac{3x^3 - 12x}{x^2 - 2x - 8}$
 $(x - 4)(x + 3)$
 $(x - 4)(x + 3)(x - 3)$
 $(x - 4)(x - 3)(x - 4)(x - 3)$
 $(x - 4)(x - 3)(x - 4)($

© The Algebros from FlippedMath.com

1.11B Polynomial Long Division and Slant Asymptotes

Multiple Choice

- 13. The function f is a rational function. The quotient and remainder form of f is given by $f(x) = (-2x + 1)^{2}$ Which describes the end behavior of f?
 - (A) $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = -\infty$ (B) $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = \infty$ (C) $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = \infty$ (D) $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$

14. Which of the following is equivalent to $\frac{x^2+5x+2}{x+5}$?

15. The function f is given by $f(x) = \frac{6x^2 + ax + 2}{x+3}$ and has a slant asymptote of y = 6x + 3. What is the value of a?

-3 6 a 2-186 3 -(A) −4 (B) 12 (C) 15 (D) 21

a = al

1.11B Test Prep

slant asymptote