For each polynomial function, find the intervals for each condition.

1. $f(x)=x^{2}-5 x+4$. When is $f(x) \leq 0$?

$$
0=(x-4)(x-1)
$$

$$
x-4=0 \quad x-1=0
$$

$$
x=4, \quad x=1
$$

2. $g(x)=x^{2}+17 x+70$. When is $g(x) \geq 0$?

$$
0=(x+7)(x+10)
$$

$$
x=-7 \quad x=-10
$$

$$
\begin{array}{c|c|c|c|c|c}
x & (-\infty,-10) & -10 & (-10,-7) & -7 & (-7, \infty) \\
\hline f(x) & \text { pos. } & 0 & \text { neg } & 0 & \text { pos }
\end{array}
$$

$$
g(x) \geq 0 \text { on the interval }(-\infty,-10] \cup[-7, \infty)
$$

3. $p(x)=(x-7)(x-1)^{2}$. When is $p(x) \leq 0$?

$p(x) \leq 0$ on the interval $(-\infty, 7]$.
4. $a(x)=x(x-8)^{3}(x+3)^{4}$. When is $a(x) \geq 0$?

even molt.

x	$(-\infty,-3)$	-3	$(-3,0)$	0	$(0,8)$	8	$(8, \infty)$
$f(x)$	pos	0	pos	0	neg	0	pos

$a(x) \geq 0$ on the interval $(-\infty, 0] \cup[8, \infty)$.
4. $h(x)=x^{3}+9 x^{2}+18 x$. When is $h(x) \geq 0$?

$$
\begin{aligned}
& 0=x\left(x^{2}+9 x+18\right) \\
& 0=x(x+3)(x+6) \\
& x=0 \quad x=-3 \quad x=-6
\end{aligned}
$$

$h(x) \geq 0$ on the interval $[-6,-3] \cup[-0, \infty)$.
6. $f(x)=-x(x+4)^{2}(x+1)(x-6)^{6}$. When is $f(x) \leq 0 ? \quad x=0 \quad x=-4 \quad x=-1 \quad x=6$

even multi								
x	$(-\infty,-4)$	-4	$(-4,-1)$	-1	$(-1,0)$	0	$(0,6)$	6

$f(x) \leq 0$ on the interval $(-\infty,-1] \cup[0, \infty)$.

For each polynomial, the degree is listed along with all of its real zeros. Find the number of NON-REAL zeros the polynomial has.
7. The degree is 5 with real zeros at $x=-5, x=1$, and $x=4$.
5-3 real =

2 non-real zeros

10 non-real zeros
8. The degree is 6 with real zeros at $x=-12$ and $x=7$.

$$
6-2 \text { real }=
$$

4 non-real zeros
9. The degree is 8 with real zeros at $x=0, x=2$, and $x=3 . x=2$ has a multiplicity of 4 .

$$
8-2-4=
$$

2 non-real zeros
11. The degree is 12 with real zeros at $x=14, x=-6$, and $x=$ $-10 . x=14$ has a multiplicity of 6 .

$$
12-2-6=
$$

4 non-real zeros

Given one non-real zero of a polynomial, find another zero.
13. $7+2 i$
14. $-5+i$
15. $1-5 i$
16. $-3-4 i$
$7-2 i$
$-5-i$
$1+5 i$
$-3+4 i$

Find the degree of the polynomial from the given input and output values.
17.

18.

19.

20.

1.5A Polynomial Functions and Complex Zeros
21. A polynomial function has 3 real zeros and 4 non-real zeros. One of the real zeros has a multiplicity of 6 . What is the degree of the polynomial?

C
(A) 7

2 real zeros $=2$
1 real $w /$ multiplicity $6=6$
4 non-real $=4$
(B) 9

$$
2+6+4=12
$$

(C) 12
(D) 13
22. No calculator allowed! The polynomial function g is given by $g(x)=(x-6)\left(x^{2}+2 x+2\right)$. Which of the following describes the zeros of g ?

$$
\begin{aligned}
& x=6 \\
& \text { is a zero. }
\end{aligned}
$$

Does not factor. Check the zeros using the quadratic formula.

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{2^{2}-4(1)(2)}}{2(1)} \\
& x=\frac{-2 \pm \sqrt{4-8}}{2}
\end{aligned}
$$

(C) g has exactly one distinct real zero and no non-real zeros.
(D) g has exactly one distinct real zero and two non-real zeros.

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{-4}}{2} \text { nen-real!. } \\
& \text { Two non-real zeros }
\end{aligned}
$$

