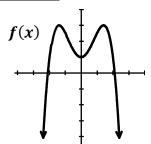

AP Precalc

Write your questions and thoughts here!

Today's lesson is focused on the shape of polynomial graphs and how to describe their end behaviors.


The "left" and "right" side of a polynomial function graph will either go "up" or "down".

As the *x*-values approach negative infinity or positive infinity, do the *y*-values get larger or smaller? (Does the left side of the graph go up or down?) The following chart is how we describe the end behavior with fancy mathematical notation.

	Left side	Right side
Up		
Down		

1. Use the graph of f(x), shown to the right, and describe its end behavior using limit notation.

p(x)

х

2. Using the axis to the right, draw an example of a polynomial function that matches the statements $\lim_{x \to -\infty} p(x) = \infty$ and $\lim_{x \to \infty} p(x) = -\infty$.

Write your questions

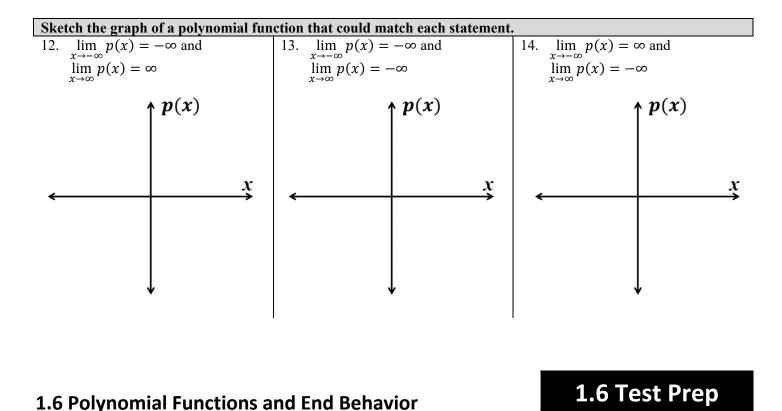
and thoughts here!

You don't need a graph to describe the end behaviors of a polynomial function. You only need to recognize the _____.

The leading term contains the variable with the largest exponent. As $x \to \infty$ or $x \to -\infty$, this leading term dominates all the other smaller terms. We don't need to worry about the smaller terms. In other words...

$$p(x) = 7x^6 - 4x^5 + 8x^4 + x^3 - 3x^2 - 9x + 10$$

If the leading term has an ______ degree, the left and right side will behave the _____.


	Left side	Right side
	$\chi \to -\infty$	$\chi \to \infty$
EVEN degree and positive leading coefficient $p(x) = x^2$		
EVEN degree and negative leading coefficient $p(x) = -x^2$		

If the leading term has an		degree, the left and right side will behave the		
		Left side	Right side	
		$\chi \to -\infty$	$\chi \to \infty$	
	ODD degree and positive leading coefficient $p(x) = x^3$			
	ODD degree and negative leading coefficient $p(x) = -x^3$			

Write your questions and thoughts here!

ions	Describe the end behavior of each polynomial function using limit notation.			
re!	3. $p(x) = -x^3 - x^2 + x$	4. $p(x) = 6x^5 - x^4 + 1$	5. $p(x) = -3x^4 + x^3 + x - 2$	

1.6 Polynomial Functions and End Behavior 1.6 Practice AP Precalculus 1.6 Practice		
Describe the end behavior of each fu	nction using limit notation.	
1. $g(x) = 4x^7 - 3x^4 + x$	2. $p(x) = 7x^4 + 3x^3 - 3x - 4$	3. $f(x) = -7x^9 - 8x^3 + 6$
4. $g(x) = -3x^6 + 5x^3 - 2x + 6$	5. $f(x) = x^3 + 4x^2 - 3$	6. $p(x) = -8x^2 - 3x + 10$
7. $p(x) = -6x^5 + x^4 + 5x^2 - 4$	8. $f(x) = 3x^2 +$	8 <i>x</i> + 11
9.	10. $y = \int_{x} \int_$	

- 15. The following polynomial function f is given by $f(x) = -7x^6 + 2x^2 + 4$. Which of the following statements about the end behavior of f is true?
 - (A) The sign of the leading term of f is positive, and the degree of the leading term of f is even; therefore, $\lim_{x \to -\infty} f(x) = \infty \text{ and } \lim_{x \to \infty} f(x) = \infty.$
 - (B) The sign of the leading term of f is negative, and the degree of the leading term of f is odd; therefore, $\lim_{x \to -\infty} f(x) = \infty \text{ and } \lim_{x \to \infty} f(x) = -\infty.$
 - (C) The sign of the leading term of f is positive, and the degree of the leading term of f is odd; therefore, $\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty.$
 - (D) The sign of the leading term of f is negative, and the degree of the leading term of f is even; therefore, $\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = -\infty.$