
1.9 Rational Functions & Vertical Asymptotes AP Precalc

1.9 Notes

Vertical Asymptotes

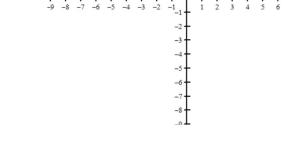
Vertical Asymptote(s):

Limit Notation:

$$\lim_{x \to -5^-} f(x) =$$

As *x* approaches -5 from the left the f(x)...

 $\lim_{x \to -5^+} f(x) =$


As *x* approaches -5 from the right the f(x)...

Example 2:

$$g(x) = \frac{x^2 - 9}{x^2 - 4}$$

2

Limit Notation of Vertical Asymptote(s):

_3 -2

Vertical Asymptotes

Let f be the rational function

$$f(x) = \frac{N(x)}{D(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2} + \dots + b_2 x^2 + b_1 x + b_0}$$

where N(x) and D(x) have no common factors.

The graph of *f* has vertical asymptotes at the zeros of D(x).

Numerically

Write your questions and thoughts here!

Example 3:

$$g(x) = \frac{x^2 + 3x}{x - 2}$$

As *x* approaches 2 from the left the g(x)...

x	$\boldsymbol{g}(\boldsymbol{x})$
1.9	
1.99	
1.999	
1.9999	

As *x* approaches 2 from the right the g(x)...

x	$\boldsymbol{g}(\boldsymbol{x})$
2.1	
2.01	
2.001	
2.0001	

Multiplicity

Example 4:

$$h(x) = \frac{x^2 + 4x - 12}{(x - 2)^2}$$

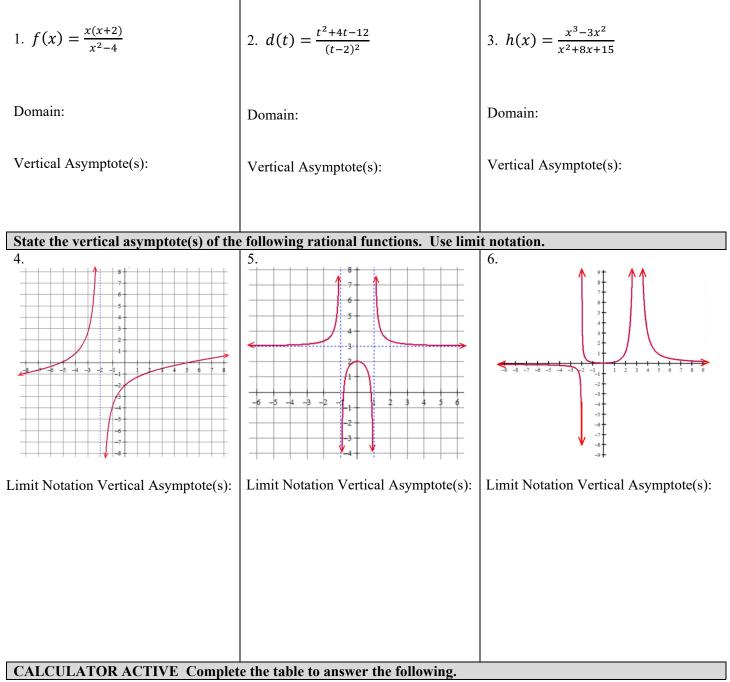
Vertical Asymptote(s):

Limit Notation of Vertical Asymptote(s):

Hole(s):

Zero(s):

Domain:


Horizontal Asymptote:

End Behavior:

1.9 Rational Functions and Vertical Asymptotes

AP Precalculus

Find the domain and vertical asymptote(s) of the following rational function if one exists.

7.
$$f(x) = \frac{x^2 - 1}{x - 4}$$

x	3.9	3.99	3.999	4	4.001	4.01	4.1
f(x)							

Vertical Asymptote:

Limit Notation of Vertical Asymptote:

1.9 Practice

CALCULATOR ACTIVE Complete the table to answer the following.

8.
$$f(x) = \frac{x^2 - 2x}{x + 2}$$

x	-2.1	-2.01	-2.001	-2	-1.999	-1.99	-1.9
f(x)							

Vertical Asymptote:

Limit Notation of Vertical Asymptote:

Use the table of the rational function *h* to find the following.

9.					
	t	d(t)	a. Find $d(0) =$	b.	Find the y-intercept.
	-0.1	5,589			i ma ene y meereepe
	-0.01	37,231			
	-0.001	96,543	c. Find $\lim_{t\to 0^-} d(t) =$	d.	Find $\lim_{t\to 0^+} d(t) =$
	-0.0001	148,234	$t \rightarrow 0^{-1}$		$t \rightarrow 0^+$
	0	undefined			
	0.0001	128,341	e. As <i>t</i> approaches zero from the	f.	As <i>t</i> approaches zero from the right the $d(t)$
	0.001	89,437	left the $d(t)$	1.	
	0.01	18,235			
	0.1	1,455			

+ -1 -1

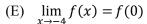
-2 --3 --4 --5 --6 -

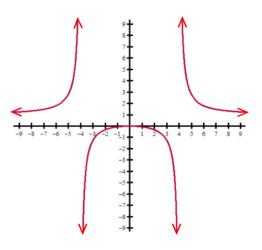
-3 -2

-9 -8 -7 -6

Make a sketch of the rational function with the following characteristics.

- 10. The graph of f has...
 - a. f(-4) = 0 b. f(6) = 0
 - c. $\lim_{x \to -3^{-}} f(x) = -\infty$ d. $\lim_{x \to -3^{+}} f(x) = \infty$
 - e. $\lim_{x \to 4^{-}} f(x) = \infty$ f. $\lim_{x \to 4^{+}} f(x) = -\infty$
 - g. $\lim_{x \to -\infty} f(x) = 2$ $h. \lim_{x \to \infty} f(x) = 2$


i.
$$f(0) = 5$$


1.9 Rational Functions and Vertical Asymptotes

1.9 Test Prep

Multiple Choice

- 11. Given the graph of f. Which of the following describes the function f?
 - (A) $\lim_{x \to -4^{-}} f(x) = -\infty$ and $\lim_{x \to -4^{+}} f(x) = -\infty$ (B) $\lim_{x \to -4^{-}} f(x) = \infty$ and $\lim_{x \to -4^{+}} f(x) = -\infty$ (C) $\lim_{x \to -4^{-}} f(x) = -\infty$ and $\lim_{x \to -4^{+}} f(x) = \infty$ (D) $\lim_{x \to -4^{-}} f(x) = \infty$ and $\lim_{x \to -4^{+}} f(x) = \infty$

Free Response

- 12. The function f is a rational function graphed in the xy-plane. The polynomial in the numerator of f has exactly one real zero at x = 3. The polynomial of the denominator of f has exactly two real zeros at both x = 3 and x = 6. The multiplicities of the zeros at x = 3 in the numerator and in the denominator are equal.
 - a. Find the domain for the graph of f.
 - b. Describe any holes and/or vertical asymptotes for the graph of f.

c. Explain how your answer from part b would change if the multiplicities of the zeros at x = 3 in the numerator and denominator were not equal?