2.2 Change in Linear and Exponential Functions

AP Precalculus

Name:

CA #2

A function has the following coordinate points.	Could the function represent a linear function, exponential
function, or neither?	

runetion, or nettiter.		
1. (5,4), (6,-2), (7,-8)	2. $\left(-3,\frac{1}{2}\right), (-2,2), (-1,8)$	3. (21,6), (22,2), (23,1)

5.

The following functions are either linear or exponential. Which is it? Justify your answer.

1	
4	

x	3	5	7
f(x)	16	4	1

x	-5	0	5
f(x)	101	51	1

Is each function linear or exponential. Identify the constant (slope or ratio) that causes the output values to change?

$6. y = \frac{2}{7} \cdot 4^x$	7. $y = -x + 2$	8. $y + 1 = 3 \cdot \left(\frac{9}{4}\right)^{x-6}$	9. $y-6 = -2(x+4)$

It is known that f(x) is a linear function and that it passes through the given points. Write an equation for this function.

10. (2,9) and (5,19)

11. (1, 10) and (6, 2)

equation for this function.	It is known that $f(x)$ is an exponential function and that it passes through the given points. Write an
	equation for this function.

12. (2,9) and (5,19)))
----------------------	----

13. (1,10) and (6,2)

Answers to 2	2.2 CA	#2
--------------	--------	----

1. linear	2. exponential	3. neither		-		each input change ly by a ratio of $\frac{1}{4}$.
5. Linear because for each input change of 5, f changes at a constant rate -50 .		6. Ratio of 4	7. S	lope of -1	8. Ratio of $\frac{9}{4}$	9. Slope of -2
10. $y - 9 = \frac{10}{3}(x - 2)$ or $y - 19 = \frac{10}{3}(x - 5)$	or	5	2. $y = 9$ or y = 19	$\cdot \left(\sqrt[3]{\frac{19}{3}} \right)^{x-2}$ $\cdot \left(\sqrt[3]{\frac{19}{3}} \right)^{x-5}$		$10 \cdot \left(\frac{5}{\sqrt{5}}\right)^{x-1}$ or $2 \cdot \left(\frac{1}{3}\right)^{x-6}$

© The Algebros from FlippedMath.com