Identify if the function is exponential growth or decay and justify your response.

The following values are output values of an exponential function of the form $f(x)=a \cdot b^{x}$, where a and b are constants. Write the function along with the input value that represents the output value.
9. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 7$
$f(x)=7(3)^{x}$
where $x=6$

$10 . \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 6$	$11 \cdot 5 \cdot 5 \cdot 5$
$f(x)=6\left(\frac{1}{2}\right)^{x}$	$f(x)=5^{x}$
where $x=4$	where $x=3$

12. $(-2) \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$
$f(x)=-2(4)^{x}$
where $x=5$

Answer the questions for each exponential function.

13. $f(x)=7(2)^{x} \longleftarrow$ そ
a. Is the function increasing or decreasing?

Increasing

b. Is the function concave up or concave down?

Concave up
c. Find $\lim _{x \rightarrow-\infty} f(x)=0$
d. Find $\lim _{x \rightarrow \infty} f(x)=\infty$
15. $f(x)=(0.2)^{x}$ て
a. Is the function increasing or decreasing?

Decreasing
b. Is the function concave up or concave down?
Concave up
c. Find $\lim _{x \rightarrow-\infty} f(x)=\infty$
d. Find $\lim _{x \rightarrow \infty} f(x)=\bigcirc$
14. $f(x)=-4(5)^{x}$
a. Is the function increasing or decreasing?

1) ecreasing
b. Is the function concave up or concave down?

Concave down

c. Find $\lim _{x \rightarrow-\infty} f(x)=0$
d. Find $\lim _{x \rightarrow \infty} f(x)=-\infty$
16. $f(x)=-6(0.8)^{x}$
a. Is the function increasing or decreasing?
Increasing
b. Is the function concave up or concave down?

Concave down
c. Find $\lim _{x \rightarrow-\infty} f(x)=-\infty$
d. Find $\lim _{x \rightarrow \infty} f(x)=0$
17. $f(x)=6\left(\frac{1}{9}\right)^{x}$
a. Is the function increasing or decreasing?

Decreasing
b. Is the function concave up or concave down?
concave up
c. Find $\lim _{x \rightarrow-\infty} f(x)=\infty$
d. Find $\lim _{x \rightarrow \infty} f(x)=0$
18. $f(x)=-(0.4)^{x}$
a. Is the function increasing or decreasing?

Increasing

b. Is the function concave up or concave down?

Concave down

c. Find $\lim _{x \rightarrow-\infty} f(x)=-\infty$
d. Find $\lim _{x \rightarrow \infty} f(x)=0$

2.3 Exponential Functions

2.3 Test Prep

19.

$a=40$

\boldsymbol{x}	0	1	2	3	4
$\boldsymbol{f}(\boldsymbol{x})$	$40 \underbrace{}_{\times \frac{1}{2}} 20$	$\underbrace{}_{\times \frac{1}{2}} 10 \underbrace{}_{\times 1 / 2} \underbrace{\frac{5}{2}}_{\times 1 / 2}$			

The exponential function f is defined by $f(x)=a b^{x}$, where a and b are positive constants. The table gives values of $f(x)$ at selected values of x. Which of the following statements is true?
(A) demonstrates exponential decay because $a>0$ and $0<b<1$.
(B) f demonstrates exponential decay because $a>0$ and $b>1$.
(C) f demonstrates exponential growth because $a>0$ and $0<b<1$.
(D) f demonstrates exponential growth because $a>0$ and $b>1$.
20. The function h is a function of the form $h(x)=a \cdot b^{x}$, where $a \neq 0$ and $b>1$. The function h is also given by $h(x)=f(x)+2$. Which of the following statements is true.
(A) The output values of both f and h are proportional over equal-length input-value intervals.
(B) The output values of f only, not h, are proportional over equal-length input-value intervals.
(C) The output values of h only, not f, are proportional over equal-length input-value intervals.
(D) The output values of neither f nor h are proportional over equal-length input-value intervals.

Explanation: Since $h(x)=a \cdot b^{x}$, this means h is proportional. h is also the additive transformation of the function f, therefore f must be exponential, but we don't know if f is proportional.

