Identify the percent increase or decrease of each function.

| 1. $f(x)=10(0.985)^{x}$ | $2 . f(n)=1.4(2.85)^{n}$ | $3 . y=6(1.516)^{x}$ | 4. $f(x)=10(0.2)^{x}$ |
| :--- | :--- | :--- | :--- | :--- |

For each problem, create a function to model the scenario.

5. A house sold for $\$ 350,000$. Housing prices p are expected to increase 2.1% per year t.
6. The number of visitors v to flippedmath.com doubles every 7 months m. There are currently 120,000 visitors to the website.
7. Mr. Kelly's IQ (I) is currently 105 , but it is decaying at a rate of 5.8% every decade d.
8. The rodent population p in a large city is being controlled by a new poison that kills half the population every 2 months m. There are currently $1,000,000$ rodents in the city.
9. A virus is spreading through the United States. On day zero, there are 121 cases c who have the virus, but it spreads at a rate of 582% increase every day d.
10. There are 3 cockroaches c behind Mr. Brust's microwave, and their population doubles every 14 days d.
11. The value v of a new motorcycle purchased for $\$ 11,000$ decreases by 15.7% per year t.
12. There is 207 grams g of radioactive material. Its half-life is 6,000 years t. How much radioactive material will there be in 15,000 years?

For each of the problems below, identify how the equivalent form reveals a different property.
13. If $f(m)=1.1^{m}$ indicates that the quantity increases by a factor of 1.1 every minute, then what does $f(m)=\left(1.1^{60}\right)^{(m / 60)}$ indicate?
14. If $f(t)=3^{t}$ indicates that the quantity increases by a factor of 3 every month, then what does $f(t)=\left(3^{12}\right)^{(t / 12)}$ indicate?

Answers to 2.5.B CA \#1

| 1. 1.5% decrease | 2. 185% increase | 3. 51.6% increase | 4. 80% decrease |
| :--- | :--- | :--- | :--- | :--- |
| 5. $p(t)=350,000(1.021)^{t}$ | 6. $v(m)=120,000(2)^{t / 7}$ | 7. $I(d)=105(0.942)^{d}$ | |
| 8. $p(m)=1,000,000\left(\frac{1}{2}\right)^{m / 2}$ | $9 . c(d)=121(6.82)^{d}$ | $10 . c(d)=3(2)^{d / 14}$ | |
| 11. $v(t)=11,000(1.157)^{t}$ | 12. $g(t)=6,000\left(\frac{1}{2}\right)^{t / 6000 ~}$ | | |
| 13. The quantity increases by a factor of 1.1^{60} every hour. | 14. The quantity increases by a factor of 3^{12} every year. | | |

