2.5.B Exponential Function Context and Data Modeling

AP Precalculus			me:			CA #1	
Identify the percent increa $1 - f(x) = 10(0.005)^{\chi}$				x	$4 - f(w) = 10^{10}$	(0,2)	
		$= 1.4(2.85)^n$	3. $y = 6(1.516)^x$		4. $f(x) = 100$	I(U.2)*	
For each problem, create a	function	to model the scen	iario.	1			
 5. A house sold for \$350,000. Housing prices p are expected to increase 2.1% per year t. 		 6. The number of visitors v to flippedmath.com doubles every 7 months m. There are currently 120,000 visitors to the website. 		 Mr. Kelly's IQ (I) is currently 105, but it is decaying at a rate of 5.8% every decade d. 			
 8. The rodent population <i>p</i> in a large city is being controlled by a new poison that kills half the population every 2 months <i>m</i>. There are currently 1,000,000 rodents in the city. 		 9. A virus is spreading through the United States. On day zero, there are 121 cases <i>c</i> who have the virus, but it spreads at a rate of 582% increase every day <i>d</i>. 		 10. There are 3 cockroaches c behind Mr. Brust's microwave and their population doubles every 14 days d. 			
 11. The value v of a new motorcycle purchased for \$11,000 decreases by 15.7% per year t. 			12. There is 207 grams <i>g</i> of radioactive material. Its half-life is 6,000 years <i>t</i> . How much radioactive material will there be in 15,000 years?				
For each of the problems h	alow id	ntify how the acri	ivalent form rouge	ls a diffar	ent property		
For each of the problems below, identify how the equivalent 13. If $f(m) = 1.1^m$ indicates that the quantity increases by a factor of 1.1 every minute, then what does $f(m) = (1.1^{60})^{(m/60)}$ indicate?			14. If $f(t) = 3^t$ indicates that the quantity increases by a factor of 3 every month, then what does $f(t) = (3^{12})^{(t/12)}$ indicate?				

.

Answers to 2.5.B CA #1									
1. 1.5% decrease	2. 185% increase		3. 51.6% increase		4. 80% decrease				
5. $p(t) = 350,000(1.021)^t$		6. $v(m) = 120,000(2)^{t/7}$		7. $I(d) = 105(0.942)^d$					
8. $p(m) = 1,000,000 \left(\frac{1}{2}\right)^{m/2}$		9. $c(d) = 121(6.82)^d$		10. $c(d) = 3(2)^{d/14}$					
11. $v(t) = 11,000(1.157)^t$			12. $g(t) = 6,000 \left(\frac{1}{2}\right)^{t/6000}$						
13. The quantity increases by a factor of 1.1^{60} every hour.			14. The quantity increases by a factor of 3^{12} every year.						