Identify the percent increase or decrease of each function.

| 1. $y=-8(3.2)^{x}$ | $2 . f(x)=15(0.855)^{x}$ | $3 . y=10(0.45)^{x}$ | 4. $y=(1.051)^{x}$ |
| :--- | :--- | :--- | :--- | :--- |

For each problem, create a function to model the scenario.

5. A population p of 500 people doubles every 35 years t.
6. Mr. Kelly bought a new tractor for his farm in New York. It cost him \$150,000.
Unfortunately, it's value v depreciates in value by 5.4% per year t.
7. There is 500 grams g of radioactive material. Its halflife is 5,700 years, t.
8. 700 grams of radioactive material m decays at a rate of 2.4% per year t.
9. A baseball card is worth $\$ 50$ and its value v increases at a rate of 23.5% per year t.
10. A plague of mice has hit Australia! Starting with only 30 mice, their population p increases by 650% every month, m.
11. The rodent population p in a large city is being controlled by a new poison that kills half the population every 6 months m. There are currently $2,000,000$ rodents.
12. A mutual-fund portfolio has a value v of $\$ 1,000$ and doubles every 7 years t.

For each of the problems below, identify how the equivalent form reveals a different property.

13. If $f(s)=(1.09)^{s}$ indicates that the quantity increases by a factor of 1.09 every second, then what does $f(s)=\left(1.09^{60}\right)^{(s / 60)}$ indicate?
14. If $f(d)=1.001^{d}$ indicates that the quantity increases by a factor of 1.001 every day, then what does $f(d)=\left(1.001^{365}\right)^{(d / 365)}$ indicate?

Answers to 2.5.B CA \#2

| 1. 220% increase | 2. 14.5\% decrease | 3. 55% decrease | 4. 5.1% increase |
| :--- | :--- | :--- | :--- | :--- |
| 5. $p(t)=500(2)^{t / 35}$ | 6. $v(t)=150,000(0.946)^{t}$ | 7. $v(t)=50(1.235)^{t}$ | |
| 8. $g(t)=500\left(\frac{1}{2}\right)^{t / 5700}$ | 9. $m(t)=700(1.024)^{t}$ | $10 . p(m)=30(7.5)^{m}$ | |
| 11. $p(m)=2,000,000\left(\frac{1}{2}\right)^{t / 6}$ | 12. $v(t)=1,000(2)^{t / 7}$ | | |
| 13. The quantity increases by a factor of 1.09^{60} every
 minute. | 14. The quantity increases by a factor of 1.001^{365} every
 year. | | |

