2.5.B Exponential Function Context and Data Modeling

AP Precalculus Name: CA #2								
Identify the percent increase or decrease of each function.								
1. $y = -8(3.2)^x$	2. <i>f</i> (<i>x</i>)	$= 15(0.855)^x$	3. $y = 10(0.45)^{-1}$	x	4. $y = (1.051)^x$			
For each problem, create a function to model the scenario.								
5. A population <i>p</i> of 500 people doubles every 35 years <i>t</i> .		 6. Mr. Kelly bought a new tractor for his farm in New York. It cost him \$150,000. Unfortunately, it's value v depreciates in value by 5.4% per year t. 		 A baseball card is worth \$50 and its value v increases at a rate of 23.5% per year t. 				
 There is 500 grams g of radioactive material. Its half- life is 5,700 years, t. 		 9. 700 grams of radioactive material <i>m</i> decays at a rate of 2.4% per year <i>t</i>. 		 10. A plague of mice has hit Australia! Starting with only 30 mice, their population p increases by 650% every month, m. 				
11. The rodent population p in a large city is being controlled by a new poison that kills half the population every 6 months m. There are currently 2,000,000 rodents.			 12. A mutual-fund portfolio has a value v of \$1,000 and doubles every 7 years t. 					
For each of the problems below, identify how the equivalent form reveals a different property.								
13. If $f(s) = (1.09)^s$ indicates that the quantity increases by a factor of 1.09 every second, then what does $f(s) = (1.09^{60})^{(s/60)}$ indicate?			14. If $f(d) = 1.001^d$ indicates that the quantity increases by a factor of 1.001 every day, then what does $f(d) = (1.001^{365})^{(d/365)}$ indicate?					

1. 220% increase	2. 14.5% decrease		3. 55% decrease		4. 5.1% increase
5. $p(t) = 500(2)^{t/35}$		6. $v(t) = 150,000(0.946)^t$		7. $v(t) = 50(1.235)^t$	
8. $g(t) = 500 \left(\frac{1}{2}\right)^{t/5700}$		9. $m(t) = 700(1.024)^t$		10. $p(m) = 30(7.5)^m$	
11. $p(m) = 2,000,000 \left(\frac{1}{2}\right)^{t/6}$			12. $v(t) = 1,000(2)^{t/7}$		
13. The quantity increases by a factor of 1.09 ⁶⁰ every minute.			14. The quantity increases by a factor of 1.001 ³⁶⁵ every year.		

Answers to 2.5.B CA #2