BIG IDEA

$$
\begin{gathered}
\log _{b} c=a \\
\text { if and only if } \\
b^{a}=c \\
b>0 \text { and } b \neq 1
\end{gathered}
$$

Let's rewrite the following logarithms as exponents.
Ex 1: $\quad \log _{3} 81=4$
Ex 2: $\log _{16} 4=\frac{1}{2}$

Let's rewrite the following exponents as logarithms.
Ex 3: $125^{\frac{1}{3}}=5$
Ex 4: $10^{3}=1000$

Find the value of each log.
Ex 5: $\log 100$
Ex 6: $\log _{2} \frac{1}{32}$

Ex 7: $\log _{4} 25$
Ex 8: $\log 39$

Algebro	Average Length of Video in seconds
Sully	505 seconds
Brust	830 seconds
Bean	1,440 seconds
Kelly	10,160 seconds

Try These:

Rewrite the exponent as a log.
Rewrite the \log as an exponent

1. $16^{\frac{3}{4}}=8$
2. $\log _{32} 4=\frac{2}{5}$

Evaluate each log
3. $\log _{25} x$ when $x=5$
4. $\log _{6} x$ when $x=12$

2.9 Logarithmic Expressions

2.9 Practice

AP Precalculus

Rewrite the following logarithms as exponents.

1. $\log _{2} 64=6$
2. $\log _{4} \frac{1}{64}=-3$
3. $\log _{25} 125=\frac{3}{2}$

Rewrite the following exponents as logarithms.
4. $10^{3}=1000$
5. $16^{\frac{5}{2}}=1024$
6. $10^{-2}=\frac{1}{100}$
© The Algebros from FlippedMath.com

Use a CALCULATOR to find the value of logarithm. Round to three decimal places.
10. $\log 140$
11. $\log _{9} 120$
12. $\log _{3} 18$

For the given data construct a plot using a LOGARITHMIC scale using the given bases. Be sure to label your axis and show your math.
12. Logarithmic Scale of base 10 .

Person	Midichlorians Found in Cells
Chewbacca	1
Han Solo	330
Luke Skywalker	125,000
Yoda	$2,750,000$
Anakin Skywalker	20,000

13. Logarithmic Scale of Base 2.

Person	Errors Per Section
Bean	5
Brust	68
Sullivan	24
Kelly	15
New Teacher	300

2.9 Logarithmic Expressions

The Richter Scale is a common way of measuring earthquakes around the world. The scale measures the amplitude of the waves from seismic activity. The Richter Scale uses a logarithmic scale of base 10. This means each order of magnitude is 10 times greater than the previous one. A 6.0 earthquake is ten times more intense than a 5.0 earthquake.

Use the scale below to answer the questions that follow.

14. Which statement most accurately describes how much more intense Earthquake C was than Earthquake A.
(A) Earthquake C is 5 times more intense.
(B) Earthquake C is 50 times more intense.
(C) Earthquake C is 10^{5} more intense.
(D) Earthquake C is $\log 5$ times more intense.
15. Which of the following statements is true.
(A) The increase in intensity from Earthquake A to B is greater than the increase in intensity from Earthquake B to C .
(B) The increase in intensity from Earthquake A to B is less than the increase in intensity from Earthquake B to C .
(C) Earthquake B is as many times more intense to Earthquake A, as Earthquake C is as many times more intense to Earthquake B.

