Use the table of selected values for the polar function $r=f(\theta)$ to answer the following.

1.

$\boldsymbol{\theta}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
\boldsymbol{r}	3	-1.24	-3	-1.24	3	7.24	9	7.24	3

a. Determine the interval(s) where f is increasing.
b. Determine the interval(s) where f is decreasing.
c. Are there any extrema on the interval $0 \leq \theta \leq \frac{7 \pi}{4}$? Explain how you know.
d. Determine the interval(s) where distance between $f(\theta)$ and the pole is increasing on $0 \leq \theta \leq 2 \pi$? Justify your work.
e. Determine the interval(s) where distance between $f(\theta)$ and the pole is decreasing on $0 \leq \theta \leq 2 \pi$? Justify your work.
f. Find the average rate of change of f between $\theta=\pi$ and $\theta=\frac{5 \pi}{4}$.
g. Estimate the value of $f\left(\frac{\pi}{3}\right)$ using an average rate of change.

Use the polar function $r=f(\theta)$ to fill in the table and answer the questions. Calculator Active.
2. $r=f(\theta)=8 \sin (2 \theta)$
a. Is f increasing or decreasing on the interval $0 \leq \theta \leq \frac{\pi}{4}$?
b. Is the distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $0 \leq \theta \leq \frac{\pi}{4}$?

$\boldsymbol{\theta}$	\boldsymbol{r}
0	
$\frac{\pi}{6}$	
$\frac{\pi}{4}$	

c. Find the average rate of change of f between $\theta=\frac{\pi}{6}$ and $\theta=\frac{\pi}{4}$.
d. Estimate the value of $f\left(\frac{\pi}{6}\right)$ using an average rate of change.

Answers to 3.15 CA \#1

1.

a. $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
b. $\left(0, \frac{\pi}{2}\right)$ and $\left(\frac{3 \pi}{2}, 2 \pi\right)$
c. at least 2 extrema: changes from decreasing to increasing to decreasing
d. $\left(\pi, \frac{3 \pi}{2}\right) r$ is positive and increasing $\left(\frac{\pi}{4}, \frac{\pi}{2}\right) r$ is negative and decreasing
e. $\left(\frac{3 \pi}{2}, 2 \pi\right) r$ is positive and decreasing $\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) r$ is negative and increasing
f. $\frac{16.96}{\pi} \approx 5.398$ units per radian
g. $y+3=-2.24\left(x-\frac{\pi}{2}\right)$

$$
f\left(\frac{\pi}{3}\right) \approx-1.827
$$

2.

$\boldsymbol{\theta}$	\boldsymbol{r}
0	0
$\frac{\pi}{6}$	6.928
$\frac{\pi}{4}$	8

a. increasing
b. increasing: r is positive and increasing
c. $\frac{-12.864}{-\pi} \approx 4.09$ units per radian
d. $y-0=10.18(x-0)$

$$
f\left(\frac{\pi}{6}\right) \approx 5.33
$$

