3.15 Rates of Change in Polar Functions

AP Precalculus

1.

Name:

Use the table of selected values for the polar function $r = f(\theta)$ to answer the following.

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
r	3	-1.24	-3	-1.24	3	7.24	9	7.24	3

- a. Determine the interval(s) where f is increasing.
- b. Determine the interval(s) where f is decreasing.
- c. Are there any extrema on the interval $0 \le \theta \le \frac{7\pi}{4}$? Explain how you know.
- d. Determine the interval(s) where distance between $f(\theta)$ and the pole is increasing on $0 \le \theta \le 2\pi$? Justify your work.
- e. Determine the interval(s) where distance between $f(\theta)$ and the pole is decreasing on $0 \le \theta \le 2\pi$? Justify your work.
- f. Find the average rate of change of f between $\theta = \pi$ and $\theta = \frac{5\pi}{4}$.
- g. Estimate the value of $f\left(\frac{\pi}{3}\right)$ using an average rate of change.

Use the polar function $r = f(\theta)$ to fill in the table and answer the questions. Calculator Active.

2. $r = f(\theta) = 8\sin(2\theta)$

- a. Is f increasing or decreasing on the interval $0 \le \theta \le \frac{\pi}{4}$?
- b. Is the distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $0 \le \theta \le \frac{\pi}{4}$?
- c. Find the average rate of change of f between $\theta = \frac{\pi}{6}$ and $\theta = \frac{\pi}{4}$.
- d. Estimate the value of $f\left(\frac{\pi}{6}\right)$ using an average rate of change.

Answers to 3.15 CA #1

2.

8 9	(2)
$f\left(\frac{\pi}{3}\right) \approx -1.82$	27	
© The Algebros from Flipp	oedMa	th.com

1.

a. $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

b. $\left(0,\frac{\pi}{2}\right)$ and $\left(\frac{3\pi}{2},2\pi\right)$

to increasing to decreasing

d. $\left(\pi, \frac{3\pi}{2}\right) r$ is positive and increasing

 $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ r is negative and decreasing

e. $\left(\frac{3\pi}{2}, 2\pi\right) r$ is positive and decreasing

 $\left(\frac{\pi}{2},\frac{3\pi}{4}\right)r$ is negative and increasing

f. $\frac{16.96}{\pi} \approx 5.398$ units per radian

g. $y + 3 = -2.24 \left(x - \frac{\pi}{2} \right)$

c. at least 2 extrema: changes from decreasing

θ	r
0	0
$\frac{\pi}{6}$	6.928
$\frac{\pi}{4}$	8

- a. increasing
- b. increasing: *r* is positive and increasing
- c. $\frac{-12.864}{-\pi} \approx 4.09$ units per radian

d.
$$y - 0 = 10.18(x - 0)$$

 $f\left(\frac{\pi}{6}\right) \approx 5.33$

θ	r
0	
$\frac{\pi}{6}$	
$\frac{\pi}{4}$	