3.15 Rates of Change in Polar Functions

AP Precalculus

1.

Use the table of selected values for the polar function $r = f(\theta)$ to answer the following.

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
r	11	9.53	6	2.46	1	2.46	6	9.53	11

Determine the interval(s) where f is increasing. Determine the interval(s) where f is decreasing. a.

increasing $(\pi, 2\pi)$

decreasing $(0,\pi)$

b. The distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $\pi \le \theta \le 2\pi$. Justify your answer.

r is positive and increasing so the distance is increasing

c. Find the average rate of change of f between $\theta = \frac{5\pi}{4}$ and $\theta = \frac{7\pi}{4}$.

 $\frac{9.53 - 2.46}{\frac{7\pi}{4} - \frac{5\pi}{4}} = \frac{7.07}{\frac{2\pi}{4}} = \frac{7.07}{\frac{\pi}{2}} = \frac{14.14}{\pi} \approx 4.5 \text{ units per radian}$

d. Estimate the value of
$$f\left(\frac{\pi}{3}\right)$$
 using an average rate of change.
Use the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ $\frac{6-9.53}{\frac{\pi}{2}-\frac{\pi}{4}} = \frac{-3.53}{\frac{\pi}{4}} = \frac{-14.16}{\pi} \approx -4.495$ $y - 6 = -4.495$ $y - 6 = -4.495$

Are there any extrema on the interval $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$? Explain how you know.

yes, there is at least one because the function goes

from decreasing to increasing

2.

- a. Is f increasing or decreasing on the interval $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$? increasing
- b. Is the distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $0 \le \theta \le \frac{\pi}{4}$?

r is negative and decreasing so the distance is increasing

c. Is the rate of change of f faster on the interval $\left[0, \frac{\pi}{8}\right]$ or the interval $\begin{bmatrix} \pi & \pi \end{bmatrix}$? Justify

$$\frac{\frac{-1.41-0}{\frac{\pi}{8}-0}}{\frac{\pi}{4}-\frac{\pi}{8}} = \frac{\frac{-1.41}{\pi}}{\frac{\pi}{8}} = \frac{-11.28}{\pi} \approx -3.59$$

θ	r
0	0
$\frac{\pi}{8}$	-1.41
$\frac{\pi}{4}$	-2
$\frac{3\pi}{8}$	-1.41
$\frac{\pi}{2}$	0

 $y-y_1=m(x-x_1)$

 $\begin{array}{c} y - 6 = -\frac{y}{495} + \frac{95}{400} + \frac{6}{6} \\ y = -\frac{9}{405} + \frac{13.06}{400} \\ y = -\frac{9}{405} + \frac{13.06}{400} \\ y = -\frac{9}{400} + \frac{9}{400} \\ y = -\frac{9}{400} \\ y = -\frac{9}{400} + \frac{9}{400} \\ y = -\frac{9}{400} + \frac{9}{400} \\ y = -\frac{9}{400} \\ y = -\frac{9}{400} + \frac{9}{400} \\ y = -\frac{9}{400} \\ y = -\frac{9$

Faster on $\left[0, \frac{\pi}{8}\right]$ because is -3.59 is more negative (steeper) than -1.502

3.15 Practice

Use the polar function $r = f(\theta)$ to fill in the table and answer the questions. Calculator Active.

31

3. $r = f(\theta) = 8\cos(\theta)$

				S					
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{3\pi}{2}$	$\frac{11\pi}{6}$	2π
r	8	6.928	0	-6.928	-8	-6.928	0	6.928	8

a. Determine the interval(s) where f is increasing. Determine the interval(s) where f is decreasing.

increasing on $(\pi,2\pi)$

decreasing on $(0,\pi)$

b. How many extrema on the interval $\frac{5\pi}{6} \le \theta \le \frac{11\pi}{6}$? Justify.

there is at least one because the function goes from decreasing to increasing

c. Determine the intervals where the distance between $f(\theta)$ and the pole is increasing on the interval $0 \le \theta \le 2\pi$. Justify your answer.

increasing on $\left(\frac{\pi}{2}, \pi\right)$ because r is negative and decreasing increasing on $\left(\frac{3\pi}{2}, \pi\right)$ because r is positive and increasing

d. Determine the intervals where the distance between $f(\theta)$ and the pole is decreasing on the interval $0 \le \theta \le 2\pi$. Justify your answer.

decreasing on $\left(\pi, \frac{3\pi}{2}\right)$ because r is negative and increasing decreasing on $\left(0, \frac{\pi}{2}\right)$ because r is positive and decreasing

e. Find the average rate of change of f between $\theta = \frac{\pi}{2}$ and $\theta = \frac{5\pi}{6}$. Use to estimate $f\left(\frac{2\pi}{3}\right)$.

$$\frac{0 - (-6.928)}{\frac{\pi}{2} - \frac{5\pi}{6}} = \frac{6.928}{-\frac{2\pi}{6}} = \frac{6.928}{-\frac{\pi}{3}} = \frac{6.928}{-\pi} \approx -6.615$$

$$\begin{array}{c} y \ y_{1} = m(\chi - x_{1}) \\ y - \partial = -6.615(\chi - \frac{\pi}{3}) \\ y = -6.615(\chi - \frac{\pi}{3}) \\ y = -6.615(\chi - \frac{\pi}{3}) + 10.39 \\ y = -3.464 \\ f(\frac{2\pi}{3}) \approx -3.464 \end{array}$$

4. $r = f(\theta) = -3 + 5\sin(\theta)$

a. Is the distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $\frac{\pi}{2} \le \theta \le \frac{3\pi}{4}$?

decreasing on $\left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$ because r is positive and decreasing

b. Find the average rate of change of f between $\theta = \frac{\pi}{4}$ and $\theta = \frac{\pi}{2}$.

$$\frac{2-0.535}{\frac{\pi}{2}-\frac{\pi}{4}} = \frac{1.465}{\frac{\pi}{4}} = \frac{5.86}{\pi} \approx 1.865 \text{ units per radian}$$

θ	r
0	-3
$\frac{\pi}{4}$	0.535
$\frac{\pi}{2}$	2
$\frac{3\pi}{4}$	0.535
π	-3

- c. Estimate the value of $f\left(\frac{5\pi}{6}\right)$ using an average rate of change
- Use the interval $\begin{bmatrix} \frac{3\pi}{4}, \pi \end{bmatrix}$ $\frac{0.535 (-3)}{\frac{3\pi}{4} \pi} = \frac{3.535}{-\frac{\pi}{4}} = \frac{14.14}{-\pi} \approx -4.5$ $\begin{array}{c} y - (-3) = -4.5 (x - \pi) \\ y + 3 = -4.5 (x - \pi) \\ -3 & -3 \end{array}$ $f\left(\frac{5\pi}{6}\right) \approx -0.643$ $\begin{array}{c} y = -4.5 \\ f\left(\frac{5\pi}{6}\right) \approx -0.643 \\ y + 5\left(\frac{5\pi}{6}\right) + 11.137 \\ -5.5 \\ y + 5.5 (\frac{5\pi}{6}) + 11.137 \\ -5.5 \\ \end{array}$

3.15 Rates of Change in Polar Functions

- 5. Consider the graph of the polar function $r = f(\theta)$, where θ is increasing in the polar coordinate system on the interval $0 \le \theta \le 2\pi$. Given $f(\theta) < 0$ and decreasing on the interval $\pi \le \theta \le \frac{3\pi}{2}$ which of the following statements is true about the distance between the point with polar coordinates $(f(\theta), \theta)$ and the origin.
 - (A) The distance is increasing for $0 \le \theta \le 2\pi$.
 - (B) The distance is decreasing for $0 \le \theta \le 2\pi$.

(C) The distance is increasing for $\pi \le \theta \le \frac{3\pi}{2}$.

(D) The distance is decreasing for $\pi \le \theta \le \frac{3\pi}{2}$.

because r is negative and decreasing on $\left(\pi, \frac{3\pi}{2}\right)$ so the distance is increasing

© The Algebros from FlippedMath.com

3.15 Test Prep

Use the table of selected values for the polar equation $r = f(\theta)$ below to answer questions 6 and 7.

CALCULATOR ACTIVE

θ	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	
r	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	
	- /	- 0.866	- 0,5	

r is negative and increasing so the distance is decreasing

- 6. The graph of the polar function $r = f(\theta)$, is given the polar coordinate system. Which of the following descriptions is true ?
 - (A) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r = f(\theta)$ is increasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is increasing.
 - (B) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r = f(\theta)$ is increasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is decreasing.
 - (C) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r = f(\theta)$ is decreasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is increasing.
 - (D) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r = f(\theta)$ is decreasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is decreasing.
- 7. If the value of $r = f\left(\frac{\pi}{8}\right)$ is estimated using the average rate of change of the function over the interval $0 \le \theta \le 2\pi$, which of the following is true?
 - (A) The estimated value would be an overestimate of the actual value by approximately 0.116.
 - (B) The estimated value would be an underestimate of the actual value by approximately -0.884.
 - (C) The estimated value would be an overestimate of the actual value by approximately 1.616.
 - (D) The estimated value would be an underestimate of the actual value by approximately -1.043.

Use the interval
$$\begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix}$$
 to estimate $\frac{-0.5-(-1)}{\frac{\pi}{4}-0} = \frac{0.5}{\frac{\pi}{4}} = \frac{2}{\pi} \approx 0.636$
 $y - (-1) = \frac{2}{\pi} (\chi - 0)$
 $y + 1 = \frac{2}{\pi} \chi$
 -1
 $y = \frac{2}{\pi} \chi - 1$
 $y = \frac{2}{\pi} (\frac{\pi}{8}) - 1$
 y