3.15 Rates of Change in Polar Functions

3.15 Practice

Use the table of selected values for the polar function $r=f(\theta)$ to answer the following.

1.

$\boldsymbol{\theta}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2π
\boldsymbol{r}	11	9.53	6	2.46	1	2.46	6	9.53	11

a. Determine the interval(s) where f is increasing. Determine the intervals) where f is decreasing.

$$
\text { increasing }(\pi, 2 \pi) \quad \text { decreasing }(0, \pi)
$$

b. The distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $\pi \leq \theta \leq 2 \pi$. Justify your answer.
r is positive and increasing so the distance is increasing
c. Find the average rate of change of f between $\theta=\frac{5 \pi}{4}$ and $\theta=\frac{7 \pi}{4}$.

$$
\frac{9.53-2.46}{\frac{7 \pi}{4}-\frac{5 \pi}{4}}=\frac{7.07}{\frac{2 \pi}{4}}=\frac{7.07}{\frac{\pi}{2}}=\frac{14.14}{\pi} \approx 4.5 \text { units per radian }
$$

d. Estimate the value of $f\left(\frac{\pi}{3}\right)$ using an average rate of change.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-6 & =-4.507\left(x-\frac{\pi}{2}\right) \\
y-6 & =-4.507 x+7.079 \\
+\frac{6}{y} & =-4.507 x+13.079 \\
y & =-4.509\left(\frac{4}{3}\right)+13.099 \\
y & =8.357
\end{aligned}
$$

$$
\text { Use the interval }\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \quad \frac{6-9.54}{\frac{\pi}{2}-\frac{\pi}{4}}=\frac{-3.54}{\frac{\pi}{4}}=\frac{-14.16}{\pi} \approx-4.507 \quad y-6=-4.507\left(x-\frac{\pi}{2}\right)
$$

yes, there is at least one because the function goes from decreasing to increasing
2.
a. Is f increasing or decreasing on the interval $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$?
increasing
b. Is the distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $0 \leq \theta \leq \frac{\pi}{4}$?
r is negative and decreasing so the distance is increasing
c. Is the rate of change of f faster on the interval $\left[0, \frac{\pi}{8}\right]$ or the interval $\left[\frac{\pi}{8}, \frac{\pi}{4}\right]$? Justify.
$\frac{-1.41-0}{\frac{\pi}{8}-0}=\frac{-1.41}{\frac{\pi}{8}}=\frac{-11.28}{\pi} \approx-3.59$
$\frac{-2-(-1.41)}{\frac{\pi}{4}-\frac{\pi}{8}}=\frac{-0.59}{\frac{\pi}{8}}=\frac{-4.72}{\pi} \approx-1.502$

$\boldsymbol{\theta}$	\boldsymbol{r}
0	0
$\frac{\pi}{8}$	-1.41
$\frac{\pi}{4}$	-2
$\frac{3 \pi}{8}$	-1.41
$\frac{\pi}{2}$	0

Faster on $\left[0, \frac{\pi}{8}\right]$ because is -3.59 is more negative (steeper) than -1.502

Use the polar function $r=f(\theta)$ to fill in the table and answer the questions. Calculator Active.
3. $r=f(\theta)=8 \cos (\theta)$
$r=f(\theta)=8 \cos (\theta)$

$\boldsymbol{\theta}$	0	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{3 \pi}{2}$	$\frac{11 \pi}{6}$	2π
\boldsymbol{r}	8	6.928	0	-6.928	-8	-6.928	0	6.928	8

a. Determine the intervals) where f is increasing. Determine the intervals) where f is decreasing.

$$
\text { increasing on }(\pi, 2 \pi) \quad \text { decreasing on }(0, \pi)
$$

b. How many extrema on the interval $\frac{5 \pi}{6} \leq \theta \leq \frac{11 \pi}{6}$? Justify.
there is at least one because the function goes from decreasing to increasing
c. Determine the intervals where the distance between $f(\theta)$ and the pole is increasing on the interval $0 \leq \theta \leq 2 \pi$. Justify your answer.

$$
\begin{aligned}
& \text { increasing on }\left(\frac{\pi}{2}, \pi\right) \text { because } r \text { is negative and decreasing } \\
& \text { increasing on }\left(\frac{3 \pi}{2}, \pi\right) \text { because } r \text { is positive and increasing }
\end{aligned}
$$

d. Determine the intervals where the distance between $f(\theta)$ and the pole is decreasing on the interval $0 \leq \theta \leq 2 \pi$. Justify your answer.

$$
\begin{aligned}
& \text { decreasing on }\left(\pi, \frac{3 \pi}{2}\right) \text { because } r \text { is negative and increasing } \\
& \text { decreasing on }\left(0, \frac{\pi}{2}\right) \text { because } r \text { is positive and decreasing }
\end{aligned}
$$

e. Find the average rate of change of f between $\theta=\frac{\pi}{2}$ and $\theta=\frac{5 \pi}{6}$. Use toestimate $f\left(\frac{2 \pi}{3}\right)$.

$$
\begin{aligned}
\frac{0-(-6.928)}{\frac{\pi}{2}-\frac{5 \pi}{6}}=\frac{6.928}{-\frac{2 \pi}{6}}=\frac{6.928}{-\frac{\pi}{3}}=\frac{6.928}{-\pi} \approx-6.615 \quad y & =m(x-x .) \\
y-0 & =-6.615\left(x-\frac{\pi}{2}\right) \\
y & =-6.615 x+10.39 \\
y & =-6.615\left(\frac{2 \pi}{3}\right)+10.39 \\
y & =-3.464 \\
y\left(\frac{2 \pi}{3}\right) & \approx-3.464
\end{aligned}
$$

4. $r=f(\theta)=-3+5 \sin (\theta)$
a. Is the distance between $f(\theta)$ and the pole is increasing or decreasing on the interval $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{4}$?
decreasing on $\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right)$ because r is positive and decreasing
b. Find the average rate of change of f between $\theta=\frac{\pi}{4}$ and $\theta=\frac{\pi}{2}$.

$$
\frac{2-0.535}{\frac{\pi}{2}-\frac{\pi}{4}}=\frac{1.465}{\frac{\pi}{4}}=\frac{5.86}{\pi} \approx 1.865 \text { units per radian }
$$

$\boldsymbol{\theta}$	\boldsymbol{r}
0	-3
$\frac{\pi}{4}$	0.535
$\frac{\pi}{2}$	2
$\frac{3 \pi}{4}$	0.535
π	-3

c. Estimate the value of $f\left(\frac{5 \pi}{6}\right)$ using an average rate of change

Use the interval $\left[\frac{3 \pi}{4}, \pi\right] \quad \frac{0.535-(-3)}{\frac{3 \pi}{4}-\pi}=\frac{3.535}{-\frac{\pi}{4}}=\frac{14.14}{-\pi} \approx-4.5$

$$
\begin{array}{rl}
y-(-3) & =-4.5(x-\pi) \\
y+3 & =-4.5 x+4.5 \pi \\
-3 & =-3 \\
y & =-4.5 x+11.137 \\
y & 4.5\left(\frac{5 \pi}{6}\right)+11.137=-0.643
\end{array}
$$

3.15 Rates of Change in Polar Functions

3.15 Test Prep

5. Consider the graph of the polar function $r=f(\theta)$, where θ is increasing in the polar coordinate system on the interval $0 \leq \theta \leq 2 \pi$. Given $f(\theta)<0$ and decreasing on the interval $\pi \leq \theta \leq \frac{3 \pi}{2}$ which of the following statements is true about the distance between the point with polar coordinates $(f(\theta), \theta)$ and the origin.
(A) The distance is increasing for $0 \leq \theta \leq 2 \pi$.
(B) The distance is decreasing for $0 \leq \theta \leq 2 \pi$.
(C) The distance is increasing for $\pi \leq \theta \leq \frac{3 \pi}{2}$.
because r is negative and decreasing on $\left(\pi, \frac{3 \pi}{2}\right)$ so the distance is increasing
(D) The distance is decreasing for $\pi \leq \theta \leq \frac{3 \pi}{2}$.

Use the table of selected values for the polar equation $r=f(\theta)$ below to answer questions 6 and 7.
CALCULATOR ACTIVE

$\boldsymbol{\theta}$	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$
\boldsymbol{r}	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$-1-0.866$			

r is negative and increasing so the distance is decreasing
6. The graph of the polar function $r=f(\theta)$, is given the polar coordinate system. Which of the following descriptions is true?
(A) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r=f(\theta)$ is increasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is increasing.
(B) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r=f(\theta)$ is increasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is decreasing.
(C) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r=f(\theta)$ is decreasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is increasing.
(D) As θ increasing from 0 to $\frac{\pi}{4}$, the polar function $r=f(\theta)$ is decreasing, and the distance between the point $(f(\theta), \theta)$ on the curve and the origin is decreasing.
7. If the value of $r=f\left(\frac{\pi}{8}\right)$ is estimated using the average rate of change of the function over the interval $0 \leq \theta \leq 2 \pi$, which of the following is true?
(A) The estimated value would be an overestimate of the actual value by approximately 0.116 .
(B) The estimated value would be an underestimate of the actual value by approximately -0.884 .
(C) The estimated value would be an overestimate of the actual value by approximately 1.616.
(D) The estimated value would be an underestimate of the actual value by approximately -1.043 .

$$
\begin{array}{rlr}
\text { Use the interval }\left[0, \frac{\pi}{4}\right] \text { to estimate } & \frac{-0.5-(-1)}{\frac{\pi}{4}-0}=\frac{0.5}{\frac{\pi}{4}}=\frac{2}{\pi} \approx 0.636 \\
y-(-1)=\frac{2}{\pi}(x-0) & \text { actual } \rightarrow f\left(\frac{\pi}{8}\right)=-\frac{\sqrt{3}}{2}= \\
y+1=\frac{2}{\pi} x-1 & \text { estimate } \rightarrow f\left(\frac{\pi}{8}\right) \approx-0.75 \\
-1 & \begin{array}{r}
\text { The estimate of }-0.75 \text { is above } \\
\text { value }-0.866 \text { by } 0.116
\end{array} \\
y & =\frac{2}{\pi} x-1 & \\
y=\frac{2}{\pi}\left(\frac{\pi}{8}\right)-1 & y=\frac{\partial}{8}-1 & =-0.75
\end{array}
$$

