
3. $f(\theta)=-2 \cos \theta$

5. $f(\theta)=-2 \sin \theta$

2. $y=-\sin x$

4. $y=-\cos x$

6. $f(t)=4 \cos t$

Write the equation of the following sine curves.

$$
y=-\sin x
$$

9.

$$
y=-3 \sin x
$$

$$
y=2 \sin x
$$

$$
y=4 \cos x
$$

11.

$$
y=-3 \cos x
$$

12.

$$
y=-2 \cos x
$$

For each problem, the sinusoid has been vertically shifted and has the given maximum and minimum values. Write the equation of the midline for the sinusoid AND find the amplitude.
13. Max value: 40

Min value: 28

$$
\frac{40+28}{2}=\frac{68}{2}=34
$$

midline: $y=34$ $|a|=6$

$$
\begin{array}{|l|l|}
\begin{array}{c}
\text { 14. Max value: } 1.9 \\
\text { Min value: } 0.1
\end{array} & \begin{array}{l}
\text { 15. Max value: } 65 \\
\text { Min value: } 30
\end{array} \\
\frac{1.9+0.1}{2}=\frac{2}{2}=1 & \frac{65+30}{2}=\frac{95}{2}=47.5 \\
\left\lvert\, \begin{array}{l}
\text { mid line: } y=1 \\
|a|=0.9
\end{array}\right. & \begin{array}{r}
\text { midline: } y=47.5 \\
|a|=17.5
\end{array} \\
\hline
\end{array}
$$

16. Max value: 10

Min value: -6

$$
\frac{10+-6}{2}=\frac{4}{2}=2
$$

midline: $y=2$ $|a|=8$
3.5 Sinusoidal Functions
17. The daily low temperatures of a certain city over a period of time are modeled with a sinusoidal function the $x y$ plane. The minimum daily low temperature is $24^{\circ} \mathrm{F}$, and the maximum daily low temperature is $52^{\circ} \mathrm{F}$. Based on these temperatures, which of the following is the best value for the amplitude of the sinusoidal function?

$$
\text { midline: } \frac{52+24}{2}=\frac{76}{2}=38 \quad|a|=|52-38|=14
$$

(A) 76
(B) 38
(C) 28
(D) 14
18. The figure shows the graph of a periodic function f in the $x y$-plane. What is the frequency of f ?

$$
F_{\text {req }}=\frac{1}{\text { period }}
$$

(A) $\frac{1}{8}$
(B) $\frac{\pi}{8}$
(C) $\frac{\pi}{4}$
(D) 8
19. Calculator active. Mr. Brust's patience with his $4^{\text {th }}$ period class seems to have cycles of ups and downs. His patience can be modeled by the function $P(t)=30 \cos (0.15 t)+60$, where t is the number of minutes he has spent with his $4^{\text {th }}$ period class and $P(t)$ is his patience level. A person's patience level is measured as 100 being the most patience anyone can possibly have, and 0 representing no patience. Which of the following best describes the behavior of $P(t)$ on minute 30 ?
hint: If you are graphing the function on a calculator, be sure your mode is set to RADIANS and not DEGREES.
(A) The amount of patience is increasing at a decreasing rate.
(B) The amount of patience is decreasing at a decreasing rate.
(C) The amount of patience is increasing at an increasing rate.
(D) The amount of patience is decreasing at an increasing rate.

