Write the equation of the line in point slope form

1. contains the points (3.4) and (21.-15)

$$M = \frac{-15-4}{21-3} = \frac{-19}{18}$$

$$\sqrt{-4} = \frac{-19}{18}(x-3)$$
or
$$\sqrt{+15} = \frac{-19}{18}(x-3)$$

y-intercept = 4 and contains the point (14,27)

$$(0,4) = \frac{27-4}{14} = \frac{23}{14}$$

$$\sqrt{y^{-4} = \frac{23}{14} \times \frac{14}{14}}$$

$$\sqrt{y^{-4} = \frac{23}{14} \times \frac{14}{14}}$$

Write the equation of the line in slope intercept form

3. contains the points (-21,10) and (13,-7)

$$M = \frac{1}{\sqrt{-10}} = \frac{3}{\sqrt{10}} + \frac{1}{\sqrt{10}}$$

$$10 = \frac{1}{\sqrt{10}} + \frac{1}{\sqrt{10}}$$

$$10 = \frac{1}{\sqrt{10}}$$

4. slope = -5 and contains the point (-12.20)

Write the equation of the line in slope intercept that is parallel to y = 3x + 5 and contains the point (12,-18)

m = 34=3x+b -18=3(12)+6 / y=3x-54 -18=36+6 -75 -36 -54=6

Write the equation of the line in slope intercept that is perpendicular to y = 3x + 5 and contains (-12,21)

-= = b

7. $f(x) = -\frac{3}{4}x - 1$

8. 2x - 3y = 12 $\chi = 6$ y = -4 9. $\frac{4y}{4} = \frac{5x - 8}{4}$ $y = \frac{5}{4}x - \frac{1}{2}$

Enter the data in your calculator and create a scatterplot with a "friendly" window.

10. Every musical note has an associated frequency measured in hertz(Hz), or vibrations per second. The table shows the approximate frequencies of the notes in the octave from middle C up to the next C on a piano.

Note Name	С	C#	D	D#	E	F	F#	G	G#	A	A #	В	Next C
# above C	0	1	2	3	4	5	6	7	8	9	10	11	12
Frequency(Hz)	262	277	294	311	330	349	370	392	415	440	466	494	523

WINDOW

a. Find a model that fits the data. (linear quadratic) exponential, abs. value, etc..)

xmin= Ò ymin= ⊘

b. Use regression and write the equation of your model. y = 0, 626×2114 , 132×212.6

xmax=|S ymax=700

c. Use the model to predict note 24. 961,18 Hz

x scl= | yscl= | O O

d. Find the note with a frequency of 600 Hz. Hint graph y = 600. This makes a straight line at 600. The point of intersection is your solution!!!

14.527 above C

11. Bob decides to find out how much soap a person uses in a day. Below is the data that he collected.

# of days used	0	1	4	5	6	7	8	9	11	12	17	19	20	21	22
Weight(grams)	124	121	103	96	90	84	78	71	58	50	27	16	12	8	6

WINDOW

a. Find a model that fits the data (linear) quadratic, exponential, absolute value, etc...).

xmin= o ymin= o

e. Use regression and write the equation of your model. Round to nearest thousandth.

xmax= 12 ymax= |30

y=-5.575x+123.141

xscl= 2 yscl= 10

b. Use the model to predict when the soap will be gone.

X= 22.089 days

c. Use the model to predict the weight after 14.2 days.

Review Skillz

Write the equation of the quadratic function in vertex form, $y = a(x - h)^2 + k$. See example for a refresher!

