10.2 Practice – Phase Shift and Tangent

Pre-Calculus

For 1-3, identify the amplitude, period, phase shift and vertical shift of each function.

1. \(f(x) = 13 \sin \left(4 \left(x + \frac{\pi}{11} \right) \right) - 7 \)
 - Amp: \(13 \)
 - Period: \(\frac{2\pi}{4} = \frac{\pi}{2} \)
 - Phase Shift: \(\text{left} \frac{\pi}{11} \)
 - Vertical Shift: \(\text{down} 7 \)

2. \(f(\theta) = -25 \cos(7(\theta - 10)) + 3 \)
 - Amp: \(25 \)
 - Period: \(\frac{2\pi}{7} \)
 - Phase Shift: \(\text{right} 10 \)
 - Vertical Shift: \(\text{up} 3 \)

3. \(f(\theta) = 4 - 9 \sin \left(2 \left(\theta + \frac{2\pi}{3} \right) \right) \)
 - Amp: \(9 \)
 - Period: \(\frac{2\pi}{2} = \pi \)
 - Phase Shift: \(\text{left} \frac{2\pi}{3} \)
 - Vertical Shift: \(\text{up} 4 \)

4. \(f(\theta) = -3 \cos \left(\frac{\theta + \pi}{3} \right) - 10 \)
 - Amp: \(3 \)
 - Period: \(\frac{2\pi}{\frac{\theta + \pi}{3}} = \frac{6\pi}{\theta + \pi} \)
 - Phase Shift: \(\text{left} \frac{\pi}{8} \)
 - Vertical Shift: \(\text{down} 10 \)

5. \(f(\theta) = 2 \sin \left(\frac{\theta - \pi}{2} \right) - 5 \)
 - Amp: \(2 \)
 - Period: \(\frac{2\pi}{\frac{\theta - \pi}{2}} = \frac{4\pi}{\theta - \pi} \)
 - Phase Shift: \(\text{right} \frac{2\pi}{5} \)
 - Vertical Shift: \(\text{down} 5 \)

6. \(f(x) = 6 \cos \left(3(x + \frac{\pi}{4}) \right) + 11 \)
 - Amp: \(6 \)
 - Period: \(\frac{2\pi}{3} \)
 - Phase Shift: \(\text{left} \frac{\pi}{12} \)
 - Vertical Shift: \(\text{up} 11 \)

For 7-18, graph the trig function.

7. \(y = \sin \left(x + \frac{\pi}{4} \right) \)
 - Amp: \(1 \)
 - Period: \(\frac{2\pi}{1} = 2\pi \)
 - Phase Shift: \(\text{left} \frac{\pi}{4} \)
 - Vertical Shift: \(\text{none} \)

8. \(y = -\cos \left(x - \frac{\pi}{2} \right) \)
 - Amp: \(1 \)
 - Period: \(\frac{2\pi}{1} = 2\pi \)
 - Phase Shift: \(\text{right} \frac{\pi}{2} \)
 - Vertical Shift: \(\text{none} \)

9. \(y = 3 \cos \left(x - \frac{3\pi}{4} \right) - 1 \)
 - Amp: \(3 \)
 - Period: \(\frac{2\pi}{1} = 2\pi \)
 - Phase Shift: \(\text{right} \frac{3\pi}{4} \)
 - Vertical Shift: \(\text{down} 1 \)

10. \(y = 2 + \sin \left(2 \left(x + \frac{\pi}{4} \right) \right) \)
 - Amp: \(1 \)
 - Period: \(\frac{2\pi}{2} = \pi \)
 - Phase Shift: \(\text{left} \frac{\pi}{4} \)
 - Vertical Shift: \(\text{up} 2 \)

11. \(y = -\sin \left(\frac{1}{2} \left(x - \frac{\pi}{2} \right) \right) - 2 \)
 - Amp: \(1 \)
 - Period: \(\frac{2\pi}{\frac{1}{2}} = 4\pi \)
 - Phase Shift: \(\text{right} \frac{\pi}{2} \)
 - Vertical Shift: \(\text{down} 2 \)

12. \(y = 2 \cos \left(4(x - \pi) \right) - 1 \)
 - Amp: \(2 \)
 - Period: \(\frac{2\pi}{4} = \frac{\pi}{2} \)
 - Phase Shift: \(\text{right} \frac{\pi}{2} \)
 - Vertical Shift: \(\text{down} 1 \)
13. $y = \frac{1}{2} \sin \left(x - \frac{3\pi}{2} \right)$

Amp: $\frac{1}{2}$
Period: 2π
Phase Shift: right $\frac{3\pi}{2}$
Vertical Shift: none

14. $y = -2 \sin (2x + \pi) + 1$

Amp: 2
Period: π
Phase Shift: left $\frac{\pi}{2}$
Vertical Shift: up

15. $y = \cos \left(2x - \frac{\pi}{2} \right)$

Amp: 1
Period: π
Phase Shift: right $\frac{\pi}{4}$
Vertical Shift: none

16. $y = -\frac{1}{2} \tan x$

Period: $\frac{\pi}{2}$
Phase Shift: none
Vertical Shift: none

17. $y = 4 \tan \left(-\frac{1}{2}x \right) - 3$

Period: π
Phase Shift: none
Vertical Shift: down 3

18. $y = \tan(2x - \pi) + 2$

Period: $\frac{\pi}{2}$
Phase Shift: right $\frac{\pi}{4}$
Vertical Shift: up

For 19–21, use the given information to create a sine function.

19.
Amplitude: 2
Period: $\frac{3\pi}{2}$
Phase Shift: left $\frac{5\pi}{6}$
Vertical Shift: down 14

$y = 2 \sin \left(\frac{4}{3}(x + \frac{5\pi}{6}) \right) - 14$

20.
Amplitude: 5
Period: $\frac{\pi}{6}$
Phase Shift: right $\frac{\pi}{24}$
Vertical Shift: up 8

$y = 5 \sin \left(12\left(x - \frac{\pi}{24}\right) \right) + 8$

21.
Amplitude: 1
Period: $\frac{\pi}{6}$
Phase Shift: left $\frac{6\pi}{7}$
Vertical Shift: up 2

$y = \sin \left(\frac{5}{3}(x + \frac{6\pi}{7}) \right) + 2$

For 22–24, write the equation of the following sine curves. Use a positive leading coefficient a and the closest phase shift possible (left or right). For some problems, it may be equal to move left or right.

22.
\[y = 2 \sin \left(\frac{4}{3}(x - \frac{\pi}{6}) \right) - 1 \]

23.
\[y = 3 \sin \left(\frac{4}{3}(x + \frac{\pi}{4}) \right) \]

24.
\[y = \sin \left(\frac{4}{3}(x - \frac{\pi}{3}) + 1 \right) \]
For 25-27, write a sine AND cosine function for the curve. Use a positive leading coefficient α and the closest phase shift possible (left or right). For some problems, it may equal to move left or right.

25. sine: $y = 3\sin(\theta + \pi)$
cosine: $y = 3\cos(\theta + \pi)$

26. sine: $y = 2\sin\left(\frac{1}{2}\theta + \frac{3\pi}{8}\right)$
cosine: $y = 2\cos\left(\frac{1}{2}\theta - \frac{3\pi}{8}\right)$

27. sine: $y = \sin(4\theta - \frac{\pi}{2}) + 2$
cosine: $y = \cos(4\theta - \pi) + 2$

Skillz Review: Complex Fraction (Fraction in a fraction)

\[
\frac{\left(\frac{2}{5}\right)}{\left(\frac{3}{10}\right)} = \frac{2}{5} \cdot \frac{10}{3} = \frac{4}{3}
\]

\[
\frac{\left(\frac{1}{\sin x}\right)}{\left(\frac{1}{\cos x}\right)} = \frac{\cos x}{\sin x} = \cot x
\]

\[
csc \theta = \frac{1}{\sin \theta} = \frac{1}{\sin \theta} \cdot \frac{\sin \theta}{\sin \theta} = \frac{\sin^2 \theta}{\sin \theta} - \frac{1}{\sin \theta} = \frac{\sin^2 \theta - 1}{\sin \theta}
\]

Skillz Review: Add/Subtract Fractions

\[
\frac{3}{5} + \frac{1}{2} = \frac{6}{10} + \frac{5}{10} = \frac{11}{10}
\]

\[
\frac{1}{\cos x} + \frac{1}{5} = \frac{5 + \cos x}{5 \cos x}
\]