11.3 Sum and Difference Identities

Is it true?
$$\sin(45° + 30°) = \sin 45° + \sin 30°$$

Sum/Difference Identities
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

Ex 1:

Ex 2:

Ex 3:
Ex 4: Write the expression as the sine, cosine, or tangent of an angle.

Ex 5: Find $\sin(x - y)$ given the following:

Ex 6: Is the equation an identity?

SUMMARY:
11.3 Sum and Difference Identities

Directions: Tell whether each statement is true or false.

<table>
<thead>
<tr>
<th>1) (\sin 75^\circ = \sin 50^\circ \cos 25^\circ - \cos 25^\circ \sin 25^\circ)</th>
<th>2) (\cos 15^\circ = \cos 60^\circ \cos 45^\circ + \sin 60^\circ \sin 45^\circ)</th>
<th>3) (\tan 225^\circ = \frac{\tan 180^\circ - \tan 45^\circ}{1 + \tan 180^\circ \tan 45^\circ})</th>
</tr>
</thead>
</table>

Directions: Write the expression as the sine, cosine or tangent of an angle.

<table>
<thead>
<tr>
<th>4) (\sin 42^\circ \cos 17^\circ - \cos 42^\circ \sin 17^\circ)</th>
<th>5) (\frac{\tan 19^\circ + \tan 47^\circ}{1 - \tan 19^\circ \tan 47^\circ})</th>
<th>6) (\cos \frac{\pi}{3} \cos \frac{\pi}{4} + \sin \frac{\pi}{3} \sin \frac{\pi}{4})</th>
</tr>
</thead>
</table>

Directions: Use the sum or difference identity to find the exact value.

| 7) \(\tan 195^\circ \) | 8) \(\cos 255^\circ \) | 9) \(\sin 165^\circ \) | 10) \(\cos \frac{13\pi}{12} \) |
Directions: Find the exact value.

13) \sin(\alpha - \beta)
\text{Given: } \cos \alpha = \frac{3}{5}, \text{ where } 0 < \alpha < \frac{\pi}{2}
\tan \beta = \frac{12}{5}, \text{ where } 0 < \beta < \frac{\pi}{2}

14) \tan(x - y)
\text{Given: } \cos x = \frac{7}{25}, \text{ where } 0^\circ < x < 90^\circ
\cos y = -\frac{4}{5}, \text{ where } 90^\circ < y < 180^\circ

15) \sin(\alpha + \beta)
\text{Given: } \sin \alpha = \frac{4}{5}, \text{ where } \alpha \text{ is in Quadrant I}
\cos \beta = -\frac{24}{25}, \text{ where } \beta \text{ is in Quadrant III}

16) \cos(x + y)
\text{Given: } \cos x = \frac{15}{17}, \text{ where } \frac{3\pi}{2} < x < 2\pi
\tan y = \frac{4}{3}, \text{ where } \pi < y < \frac{3\pi}{2}
Directions: Is the equation an identity? Explain using the sum or difference identities

<table>
<thead>
<tr>
<th>Equation</th>
<th>Identity Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>17) (\cos(x - \pi) = \cos x)</td>
<td>Use the identity: (\cos(x - \pi) = -\cos x)</td>
</tr>
<tr>
<td>18) (\sin(x - \pi) = \sin x)</td>
<td>Use the identity: (\sin(x - \pi) = -\sin x)</td>
</tr>
</tbody>
</table>

REVIEW SKILLZ: Directions: Solve each triangle.

1) [Diagram of triangle with sides 12.9 and 6.2, angle A not specified.]

2) [Diagram of triangle with sides 10 and side 67°, angle A not specified.]

11.3 Application and Extension

1) Find the exact value.
\(\cos 285^\circ \)

2) Find the exact value.
\(\cos(x + y) \)

Given: \(\cos x = \frac{15}{17}, \) \(\frac{3\pi}{2} < x < 2\pi \)

Given: \(\tan y = \frac{4}{3}, \) \(\pi < y < \frac{3\pi}{2} \)
3) Verify the following DOUBLE ANGLE IDENTITIES. (Hint: \(\sin(2x) = \sin(x + x) \))

a) \(\sin(2x) = 2 \sin x \cos x \)

b) \(\cos(2x) = 2 \cos^2 x - 1 \)

5) When a wave travels through a taut string (like a guitar string), the displacement \(y \) of each point on the string depends on the time \(t \) and the point's position \(x \). The equation of a standing wave can be obtained by adding the displacements of two waves traveling in opposite directions. Suppose two waves can be modeled by the following equations:

\[
y_1 = A \cos\left(\frac{2\pi t}{3} - \frac{2\pi x}{5}\right) \quad y_2 = A \cos\left(\frac{2\pi t}{3} + \frac{2\pi x}{5}\right)
\]

Find \(y_1 + y_2 \)

6) Mr. Sullivan has been carrying the other Algebros on his back for the last several years. He knows from Mr. Rahn's physics' class that the force \(F \) (in pounds) on a person's back when he bends over at an angle \(\theta \) is:

\[
F = \frac{0.6W \sin(\theta+90^\circ)}{\sin 12^\circ}
\]

Simplify the above formula.