PRACTICE 7.1

Solve each equation for the unknown variable.

1.
$$27^{3x} = 9$$

 $(3^3)^{3x} = 3$
 $9^x = 3$
 $9^x = 2$
 $x = 2$
 $x = 2$

4.
$$(5^{2x})^{(x+2)} = 1$$

$$5^{2x^{2}+4x} = 5$$

$$3x^{2}+4x = 0$$

$$3x(x+2) = 0$$

$$2x = 0 \quad x+2 = 0$$

$$x = 0 \quad x = -2$$

$$. 25^{-k} \cdot 5^{3} = 625$$

$$(5^{2}) \cdot 5 = 5$$

$$-2k \cdot 3 = 5$$

$$5 \cdot 5 = 5$$

$$-2k + 3 = 4$$

$$5 = 5$$

$$-2k + 3 = 4$$

$$K = \frac{1}{2}$$

1.
$$27^{3x} = 9$$
2. $25^{-k} \cdot 5^3 = 625$
 $(5^2)^{-k} \cdot 5 = 5^4$
3. $(\frac{1}{3})^{-3x+3} = 27^x$
 $(\frac{3}{3})^{3x} = 3$
 $(\frac{3}{3})^{3x} = 3$
3. $(\frac{1}{3})^{-3x+3} = 27^x$
 $(\frac{3}{3})^{-3x+3} = 3^x$
 $(\frac{3}{3})^{-3x+3} = 3^x$
 $(\frac{3}{3})^{-3x+3} = 3^x$
4. $(5^{2x})^{(x+2)} = 1$
5. $(\frac{7}{7^{8x}})^{-3x} = 7$
6. $(\frac{3}{3})^{-3x+3} = 3^x$
 $(\frac{3}{3})^{-3x+3} = 3^x$

certificates of deposit, the following were listed. Which bank should you chose for a \$5000 investment? Decide BEAN COUNTERS ARE THE CHEAPEST'S by completing the table.

Bank	APR	Compounded	Initial Investment	Value after 3 Yrs		
The Brust Price Bank	3.12%	Quarterly N=4	\$5000	5488.61		
\$ully.com	3.00%	Daily n = 365	\$5000	5470.85		
Kelly-Green\$ Bank	2.96%	Monthly n=12	\$5000	5463.71		
BeanCounters.com	2.75%	Continuously	\$5000	5429.99		
				A=Port J		

Find each missing value in the table.

Initial Value	% Change	Growth or Decay?	Equation			
1.25	Loss of 25%	Decay	$y = 1.25(1 - 0.25)^x$			
1.25	GAIN 25 %	GROWTH	$y = 1.25(1.25)^x$			
0.75	GAIN 25%	GROWTH	$y = 0.75(1.25)^x$			
0.75	Loss 25%	DECAY	$y = 0.75(0.75)^x$			
3	GAIN 100%	GROWTH	$y = 3(2)^x$			
-5	Loss of 94%	DECAY	$y = -5(.06)^{x}$			
2.45	Gain of 415%	GROWTH	V= 2.45 (5.15)x			
а	Loss of r%	DECAY	$u = a(1-r)^{x}$			

100% - 94% = 6%

7.1 - Exponential Functions

9. The equation $y = 25,000(1+0.04)^x$ models the salary of an employee who receives an annual raise.

Give the meaning of each number and variable in this equation.

25,000: STARTING SALARY 0.04: 470 RAISE 1: 10070 of CURRENT

A ball is dropped from a height of 12 feet and is allowed to bounce over and over. The height of each bounce is modeled in the exponential DECAY model below.

Bounce	0	1	2	3	4	 8	 100
Height (ft)	12	7.8	5.07	3.2955	2.142075	 ???	 ???

10. Function: $y = 12(.65)^x$ 11. 8th Bounce: 3824£ 12. 100th Bounce 2.3×10^{-18}

For 13-15, sketch the graph of each exponential function by doing the following: Sketch the asymptote, label at least two distinct coordinate points on each graph, and write the domain and range of each function.

Range: 470

Domain.

Range:

Domain:

Range: 4 CO

Change Up! Solve for the missing side lengths. Leave your answers in simplest radical form.

16.

19.

Watch the UNIT 7 SKILLS REVIEW video help on these special right triangles....