Perform each conversion.

6.
$$30 \text{ mi/hr} = 44 \text{ ft/sec}$$

A windmill for generating electricity has a blade that is 30 feet long. Depending on the wind, it rotates at various velocities. In each case, find the angular velocity in rad/sec for the tip of the blade.

500 rev/sec

$$W = \frac{1260.5}{4}$$

11,000 rev/hr

$$M = \frac{11}{1000.51}$$

$$M = \frac{4}{1000}$$

50.000 rev/day

A common speed for an electric motor is 3450 revolutions per minute. Saw blades of various diameters can be attached. Determine the linear velocity in mi/hr for a point on the edge of a blade given the diameter.

10. 6 in

$$\omega = \frac{4}{6} = \frac{3450.2\pi}{1 \text{ mis}}$$

V= 6900m (3)

11. 1.2 feet

Using shortcut!

12. 1 yard

$$\omega = \frac{8}{4} = \frac{3450.1\pi}{1 \text{ min}}$$

13. A circular blade with a 12-inch diameter spins at a rate of 1800 rpm (revolutions per minute).

a. What is the blade's angular velocity in radians per minute?

$$\omega = \frac{\sigma}{t} \qquad \omega = \frac{1906.3\pi}{1 \text{min}} = 3600 \text{min}$$

b. Find the linear velocity (in inches per minute) of one of the teeth on the edge of the blade.

c. Convert the linear velocity into feet per second.

14. Vinyl record albums are 11 inches in diameter and spin at a rate of 33 rpm.

a. What is a record's angular velocity in radians per minute?

$$\omega = \frac{\sigma}{t}$$
 $\omega = \frac{33.1\pi}{1 \text{ min}} = 66\pi \text{ rat/min}$

b. How fast (in inches per minute) would a record move under a needle placed on the records edge?

c. Convert this linear velocity to feet per second.

- 15. With his arms fully extended, a baseball player swings a bat. Using his shoulder as the center of rotation, the bat moves through 120° in only 0.2 seconds.
 - a. What is the angular velocity of the batter's swing in radians per second?

$$\omega = \frac{1}{2} \qquad \omega = \frac{1}{2} \cdot \frac{\partial w}{\partial x} = \frac{10}{3} \pi \frac{10}{3} = \frac{10}{3} = \frac{10}{3} \pi \frac{10}{3} = \frac{10}{3} =$$

b. As he swings the bat, the player hits a baseball. Suppose the ball leaves the bat at a distance of 40 inches from the player's shoulder. How fast (in miles per hour) would the ball be moving?

c. During a second time at bat, the player hits another ball, which leaves the bat a distance of 43 inches from the player's shoulder. How fast (in miles per hour) would this ball be moving?

Skillz Review Simplify the following.

$$1. \frac{\frac{1}{2}}{\frac{1}{4}} \frac{1}{2} \cdot \frac{4}{5} = \frac{4}{10} = \frac{1}{5}$$

$$2. \frac{\frac{1}{4}}{\frac{\sqrt{2}}{2}} \frac{1}{4} \cdot \frac{1}{5} = \frac{1}{45} = \frac{1}{15}$$

$$1. \frac{\frac{1}{5}}{\frac{1}{4}} \frac{1}{2} \cdot \frac{4}{5} = \frac{1}{45} = \frac{1}{15} \cdot \frac{1}{5} = \frac{10 \cdot 15}{15 \cdot 13} \cdot \frac{10 \cdot 15}{3} \cdot \frac{10 \cdot 15}{3} \cdot \frac{1}{5} = \frac{15}{252} \cdot \frac{15}{5} = \frac$$