2.10 Inverses of Exponential Functions

Directions: Describe the function, $f(x)$ (exponential, logarithmic, or neither), how you know why it is that function and then find points for its inverse, $g(x)$.
1)

X	$f(x)$
3	8
4	16
5	32
6	64

X	$G(x)$
8	3
16	9
32	5
64	6

Exponential because the y-values are being Multepleet.
3.

X	$f(x)$
0	1
1	4
2	7
3	10

X	$\mathrm{G}(\mathrm{x})$
1	0
4	1
7	2
16	3

Neither -Bott X - AND y-Jalues ale bedel ADDED!

4.

X	$G(x)$
1	.5
0	1
-1	2
-2	4

LOGARITHMELTHE x-VALUES ARE RENE MULTIPLIED.
2)

X	$\mathrm{f}(\mathrm{x})$
$1 / 9$	-2
$1 / 3$	-1
1	0
3	1

X	$G(x)$
-2	$1 / 9$
-1	$1 / 3$
0	1
1	3

LOGARITHMIC - THE x-VALUES ME E BERG MULTIPLIED.
 $\left\{\begin{array}{c}g^{(f(x))} \\ 4 . \operatorname{los}\left(10^{.(4 x}\right) \\ 4 . .25 x \\ x \\ \text { andes }\end{array}\right.$

Directions: Find the inverse of the given function.

$$
\begin{aligned}
& 8 . h(x)=4^{5 x} 5 \cdot 4^{5 y} \\
& \log _{4} x=\log _{4} 4^{5 y} \\
& \frac{\log _{4} x}{5}=\frac{5 y}{5} \\
& \frac{\log _{y} x}{5}=\frac{1}{5} \cdot \log _{4} x=y=h^{-1}(x) \\
& \text { 10.a(x)=1-1} \cdot \log _{8} x \\
& 4 x=\left(\frac{1}{4} \cdot \log _{8} y\right) \\
& 8^{4 x}=\log _{8} y \\
& 8^{4 y}=y=a^{-1}(x)
\end{aligned}
$$

2.10 Inverses of Exponential Functions

Which of the following represent a possible function that is the inverse of $f(x)=0.25^{x}$.

做) I

$f(x)=.24^{x}$	
X	$f(x)$
-3	64
-2	16
-1	4
0	1

THIS IS

x values inereaic multiplicatialy

