Instructions: Let x and y be positive constants. Write each expression as a sum or difference of logarithms.

1. | $\log _{3}\left(x y^{3}\right)$ |
| :--- |
| $\log _{3} x+\log _{3} y^{3}$ |
| $\log _{3} x+3 \log _{3} y$ |
| 3. $\log 1000 x^{3}$ |
| $\log 1000+\log x^{3}$ |
| $3+3 \log x$ |
| 5. $\log _{2} \sqrt{\frac{10 x^{3}}{y^{2}}}=\frac{1}{2}\left(\log _{2} 16 x^{3}-\log _{2} y^{2}\right)$ |
| $\frac{1}{2}\left(\log _{2} 16+\log _{2} x^{3}-2 \log _{2} y\right)$ |
| $\frac{1}{2}\left(4+3 \cdot \log _{2} x-2 \log _{2} y\right)$ |

$$
\begin{aligned}
& \text { 2. } \ln \frac{x^{2}}{y^{3}} 2-\ln y^{3} \\
& \ln x^{2} x-3 \ln y
\end{aligned}
$$

$$
\text { 4. } \log _{2}(8 \sqrt{x})
$$

$$
\begin{aligned}
& \text { 4. } \log _{2}(8 \sqrt{x}) \\
& \log _{2} 8+\log _{2} x^{1 / 2} \\
& 3+\frac{1}{2} \log _{2} x
\end{aligned}
$$

6. $\log _{3}(9 x-27)$

$$
\begin{aligned}
& \log _{3}(9 x-27) \\
& \log _{3}((9)(x-3))
\end{aligned}
$$

$$
\log _{3} 9+\log _{3}(x-3)
$$

$$
2+\log _{3}(x-3)
$$

Instructions: Let \mathbf{x} and \mathbf{y} be positive constants. Write each as a single logarithm.
7. $\ln 3+\ln x$

$$
\begin{gathered}
\log _{3} x^{2}-\log _{3} y^{4} \frac{x^{2}}{y^{4}}
\end{gathered}
$$

CALCULATOR ACTIVE: Instructions: Use the change of base to change each to a logarithm with base 10 or base e. Then use a calculator and find the value of the logarithm to the nearest thousandth. 11. $\log _{4} 123$

$\frac{\log 123}{\log ^{4} 4}$ or $\frac{\ln 123}{\ln 4} \left\lvert\,$| $\frac{\log 578}{\log 9}$ or $\frac{\ln 578}{\ln 9}$ |
| ---: |
| 3.471 |$\quad 2.894\right.$

Instructions: Describe any transformations on the function, then find the domain and range of the transformed function.
13. $f(x)=\log _{4} 16 x$
$f(x)=\log _{1} 16+\log _{4} x$

$$
f(x)=2+\log _{4} x
$$

$D:(0, \infty)$ TiVet.cal
$R:(-\infty, \infty)$ shift up aunts
15. $f(x)=\log _{5} x^{2}$

$$
f(x)=2 \cdot \log _{4} x
$$

$$
D=(0, \infty)
$$

$$
R=(-\infty, \infty)
$$

T: Vertical Dikaimot2.

$$
\begin{aligned}
& \begin{array}{l}
14 . g(x)=\log _{2}(x) \\
g(x) \\
g
\end{array} \log _{2} x-\log _{2} 8 \\
& g(x)=\log _{2} x-3 \\
& D:(0, \infty) \quad \text { T: Vertical } \\
& R:(-\infty, \infty) \text { TRANSLATON Dow } \\
& 3 \\
& 16 \cdot h(x)=\log _{2}(32-16 x) \\
& h(x)=\log _{2}(16(2-x)) \\
& h(x)=\log _{2} 16+\log _{2}(-(x-2)) \\
& h(x)=4+\log _{2}(-(x-2))
\end{aligned}
$$

$D=(-\infty, 2) \quad T:$ Vertical shittup
2.12 Logarithmic Function Manipulation
17. Let x and y be positive constants. Which of the following is equivalent to $5 \log x+6 \log y$.
(A) $\log \left(x^{5}+y^{6}\right)$
(B) $\log \left(x^{5} y^{6}\right)$
(C) $\log \left(x^{5}-y^{6}\right)$
(D) $\log (5 x+6 y)$

$$
\begin{gathered}
\log ^{\operatorname{tog} \log x+6 \log y .}+\log y^{6} \\
\log x^{5} y^{6}
\end{gathered}
$$

18. Let x and y be positive constants. Which of the following is NOT equivalent to: $\log _{3}(x+3)+2 \log _{3}(x-1)-\log _{3}(x+2)$.
(A) $\log _{3}\left(\frac{2(x+3)(x-1)}{(x+2)}\right)$

$$
\log _{3}(x+3)+\log _{3}(x-1)^{2}-\log _{3}(x+2)
$$

(B) $\log _{3}\left(\frac{(x)(x-1)(x-1)}{(x+2)}\right)$

$$
\log _{3} \frac{(x+3)(x-1)(x-1)}{x+2}
$$

(C) $\log _{3}\left(\frac{\left(x+\sqrt{x-1)^{2}}\right.}{(x+2)}\right)$

(D) $\log _{2}\left(\frac{(x+3)\left(x^{2}-2 x+1\right)}{(x+2)}\right)$
19. If $\log 3=x$ and $\log 4=y$, which of the following expresses $\log \sqrt{12}$?
(A) $\frac{1}{2}(x-y)$

$$
\log \sqrt{3 \cdot 4}
$$

(B) $\frac{1}{2}(x y)$
(C) $\frac{1}{2} x+2$
(D) $\frac{1}{2}(x+y)$

$$
\begin{aligned}
& \log \sqrt{3}+\log \sqrt{4} \\
& \log 3^{1 / 2}+\log 4^{1 k} \\
& \frac{1}{2} \log 3+\frac{1}{2} \log 4
\end{aligned}
$$

$$
\frac{1}{2}(\log 3+\log 4)
$$

20. Approximate $\log _{b} 18$, given that $\log _{b} 2 \approx .4307$ and $\log _{b} 3 \approx .6827$.
(A) 0.8968
(B) 1.1134
(C) 1.5441
(D) 1.7961

$$
\begin{aligned}
\log _{b} 18=\log _{b}(2.9) & =\log _{b} 2.3^{2} \\
& =\log _{b} 2+2 \log _{b} 3 \\
& =.4307+2(.687) \\
& =1.7961
\end{aligned}
$$

