nearest thousandth.

CALCULATOR ACTIVE: Instructions: Solve each equation with a graphing calculator. Round to nearest thousandth.
$x=12.712$

E: Instructions: Solve.

CALCULATOR ACTIVE: Instructions: Solve.
15) Use the formula for continuously compounded to solve. $A=P e^{r t}$, where A is how much money we currently have, P is the principal (how much we started with), r is the interest rate and t, is the amount of time in years.

Mr. Kelly currently has $\$ 450,000$ in an investment account. He originally put in $\$ 200,000$ into the account which earns 4.5% interest. How many years has he been investing in this account?

$$
\ln 2.25=.045 t
$$

16. Consider the functions f and g given by $f(x)=\ln (-x+8)$ and $g(x)=\ln (x+2)+\ln (x-8)$. In the $x y$ plane, what are all the x-coordinates of the points of intersection of the graphs of f and g ?
(A) $x=8$
(B) $x=-3$
(C) $x=8$ and $x=-3$
(D) No solution

$$
\ln (x+8)=\ln (x+2)+\ln (x-8)
$$

$$
\ln (-x+8)=\ln [(x+2)(x-p)]
$$

$$
-x+8=x^{2}-8 x+2 x-16
$$

$$
\left.\begin{array}{rl}
\ln (-8+8) \\
\ln (0)
\end{array}\right) \quad \begin{aligned}
&-x+8=x^{2}-6 x-16 \\
& 0=x^{2}-5 x-24 \\
& 0=(x-8)(x+3) \\
& \text { Arcoum inv r } \neq 0 \\
& \text { 17. Solve the equation } \log _{b} a+\log _{b} 5=c \text { for } a \text { or }
\end{aligned}
$$

because
(A) $\frac{5}{b^{c}}$
(B) $5 b^{c}$
(C) $b^{c}-5$
(D) $\frac{b^{c}}{5}$

$$
\begin{aligned}
\log _{b} 6 a & =c \\
b^{c} & =5 a \\
\frac{b^{c}}{b} & =a
\end{aligned}
$$

$$
x \neq-3
$$

when you pot it bact into the equation it would make all the arguments negation
18. What are all values of x for which $\ln \left(x^{5}\right)=\ln \left(x^{3}\right)+16$?
(A) $x=e^{8}$ and $x=-e^{8}$
(B) $x=-e^{8}$
(C) $x=e^{8}$
(D) $x=8$ and $x=-8$

$$
\text { (D) } x-\text { outta } x--0
$$

$$
\begin{aligned}
& \ln x^{5}-\ln x^{3}=16 \\
& \ln \frac{x^{5}}{x^{3}}=16 \\
& \ln x^{2}=16 \\
& \pm \sqrt{e^{16}}=\sqrt{x^{2}} \\
& e^{8} \text { or }-e^{8} \rightarrow \begin{array}{l}
\text { Does not work } \\
\text { because cannot } \\
\text { tate } \operatorname{lnot} a \\
\text { negating }
\end{array}
\end{aligned}
$$

