CALCULATOR ACTIVE: Instructions: Solve each inequality.

$$
\begin{aligned}
& \text { 1) } \log _{4} x<3 \\
& x<4^{3} \quad x>0 \\
& x<64 \\
& \text { so } \begin{array}{l}
0<x<64 \\
\text { or } \\
(0,64)
\end{array}
\end{aligned}
$$

Instructions: Find the inverse of each function.
7) $g(x)=\ln (x-4)+8$

$$
\begin{gathered}
\text { 8) } f(x)=3\left(2^{x}\right)+6 \\
x=3\left(2^{\prime}\right)+6 \\
x-6=3\left(2^{\prime \prime}\right) \\
\frac{x-6}{3}=2^{11} \\
\log _{2}\left(\frac{x-6}{3}\right)=\log _{2} 2^{\prime \prime} \\
\log _{2}\left(\frac{x-6}{3}\right)=y
\end{gathered}
$$

$x=\ln (y-9)+8$
$e^{x-8}=e^{\ln (y-4)}$

$$
e^{x-8}=y-4
$$

9) $h(x)=3 \log _{2}(2 x+1)-3$

$$
x=3 \log _{2}(2 y+1)-3
$$

$$
x+3=3 \log _{2}(2 y+1)
$$

$$
2_{2}^{\frac{x+3}{3}}=\log _{2}(2 y+1)
$$

$$
2^{\frac{x+3}{3}}=2 y+1
$$

$$
2^{\frac{x+3}{2}-1}=2 y
$$

$$
\begin{aligned}
& 10)(x)=22^{2+8}-5 \cdot 5 \\
& x=2 e^{1+5}-5 \\
& x+5=2 e^{1+8} \\
& \frac{x+5}{2}=e^{1+8} \\
& \ln \left(\frac{x+5}{2}\right)=\ln e^{1+8} \\
& \ln \left(\frac{x+1}{2}\right)=y+8 \\
& \ln \left(\frac{15}{2}\right)-8=y
\end{aligned}
$$

CALCULATOR AGTIVE: Instructions: Solve.
11) Use the formula for continuously compounded to solve. $A=P e^{r t}$, where A is how much money we currently have, P is the principal (how much we started with), r is the interest rate and t, is the amount of time in years.

If Mr. Brust currently has $\$ 250,000$ in his retirement account that earns him 8.5%, how long will it take him to earn at least $\$ 1,000,000$?

$$
\begin{aligned}
1,000,000 & <250,000 e^{0.085 t} \\
4 & <e^{0.085 t} \\
\ln 4 & <\ln e^{0.085 t} \\
\ln 4 & <0.085 t
\end{aligned}
$$

12) When considering the equation $\log (x-3)+\log (5)>\log (x+9)$, which of the following domains is our initial restriction.
(A) $(3, \infty)$
(B) $(5, \infty)$
(C) $(-9, \infty)$
(D) $(6, \infty)$
13) When considering the equation $\log (x-3)+\log (5)>\log (x+9)$, which of the following represents the domain of all solutions to the inequality?
(A) $(3, \infty)$
(B) $(5, \infty)$
(C) $(-9, \infty)$
(D) $(6, \infty)$

$$
\begin{aligned}
& \text { lotions to the inequality? }>\log (x+9) \\
&5(x-3)) \\
& 5(x-3)>x+9 \\
& 5 x-15>x+9 \\
& 4 x>24 \\
& x>6
\end{aligned}
$$

14) Express y as a function of x. A, B and C are constant, positive numbers.

$$
\begin{aligned}
& \log (y-A)=B x-\log C \\
& \log (y-A)+\log C=B x \\
& \log (C(y-A))=B x \\
& C(y-A=10^{B x} \\
& y-A=\frac{10}{C} \\
& y=\frac{10^{6 x}}{C}+A
\end{aligned}
$$

(7) $y=\frac{10^{B x}}{C}+A$
(B) $y=C+A\left(10^{B x}\right)$
(C) $y=\frac{C}{A}-10^{B x}$
(D) $y=\frac{B x^{10}}{C}+A$

