2.14 Logarithmic Function Context and Data Modeling

Calculator Active: Instructions: Use the data provided to find a regression equation and answer the questions. Round to nearest thousandth.

1) Mr. Bean started learning Chinese in hopes of translating all his videos one year. He created some data to find a model for the number of days studying as a function of the number of words he learned that day.

\# of Words Learned	10	32	79	197	400
\# of days studying	1	6	10	14	17

a) What's a logarithmic regression equation that could model this situation?

$$
f(x)=-9.031+4.350 \ln x
$$

b) How many days would it take for Mr. Bean to learn 1000 words?

$$
f(1000)=-9.031+4.350 \ln 1000=21.021 \sim 21 \text { days }
$$

c) How many words would he learn if he studied for 2 months (60 days)?
$66=-9.031+4.35 \operatorname{lax}^{2}$
$69.031=9.35 \operatorname{lax}^{2}=7$

2) Mr. Sullivan recently decided (with the help from his doctor) that he needed to start a diet. Each week he collects data on the amount of weight he loses that week. He wants to find a regression equation that models the pounds lost on a particular week as a function of the week number.

Week \#	1	2	6	9
Pounds Lost that week	9.5	8.5	6.5	5.5

a) What's a logarithmic regression equation that could model this situation?

$$
f(x)=9.616-1.8 \text { of } \ln x
$$

b) Which week number will Mr. Sullivan lose 2 pounds?

c) How many pounds will Mr. Sullivan lose during the $12^{\text {th }}$ week?
$f(12)=9.616-1.808 \ln (12)$
$f(11)=5.12$ pounds
3) The latest and greatest new tech firm, Math Geek Tech, is about to go public on the Stock

Exchange. The market guys at Math Geek Tech want to create a regression model that shows the stock price (in dollars) as a function of the number of days on the market.

Days on Market	1	3	4	7
Stock Price(\$)	112	150.5	160.5	180.1

a) What's a logarithmic regression equation that could model this situation?

$$
f(x)=112.012+34.999 \ln x
$$

$$
\begin{aligned}
& f(x)=112.012+34.999 \ln x \\
& \text { villi it take for the stock price to be } \$ 250 ? \\
& 250=112.02+34.994 \ln \times e^{3.994}=x
\end{aligned}
$$

b) How many days will it take for the stock price to be $\$ 250$?

$$
\begin{aligned}
& 137.98 \%=34.991 \operatorname{lnx} \quad 51.582=x \\
& 3.913=\ln x+52 \text { dow }
\end{aligned}
$$

c) What would the stock price be after the first two weeks on the market (14 days)?

$$
\begin{aligned}
& f(14)=112.012+34.994 \ln 14 \\
& f(19)=\$ 204.36
\end{aligned}
$$

Calculator Active: Instructions: Use the information given to answer the questions. Round to nearest thousandth.
4) People can use the formula below to determine future populations $(N(t))$ of cities. N_{0} represents the initial population, r is the rate of population growth, and t is the time in years.

$$
N(t)=N_{0} e^{r t}
$$

a) What would the population be of Cleveland, Ohio be in 10 years if there are currently 275,000 people, with a population growth rate of 2.5%.
$N(10)=275,000\left(e^{0.025(10)}\right)$

$$
=353,107 \text { people }
$$

b) What growth rate would Cleveland, Ohio need to achieve a population of 400,000 people in 20 years?

5) Forensics often use Newton's Law of Cooling to determine the elapsed time since a person has died. The formula is $t=-10 \ln \left(\frac{T-R}{98.6-R}\right)$, where T stands for the body's temperature in degrees Fahrenheit, R is the temperature of the room and t is the elapsed time since death in hours.
a) How many hours had elapsed if the temperature of the room was 75° and the body's temp was 85 hours?

b) Suppose a body round 5 hours after death (neighbor heard thud) in a room that was 65°. What was
the temperature of the body $5=-10 \ln \left(\frac{T-65}{986-65}\right)$
$-\frac{1}{2}=\ln \left(\frac{T-65}{33.6}\right)$

$$
\begin{aligned}
& 33.6\left(e^{-1 / 2}\right)=T-65 \\
& 33.6\left(e^{-1 / 2}\right)+65=
\end{aligned}
$$

2.14 Logarithmic Function Context and Data

2.14 Test Prep

6) The table presents values for a function, f, at selected values of x . A logarithmic regression is used to model the data. What is the value of $f(4.5)$?
(A) 35.225
(B) 34.987
(C) 54.639
(D) 54.012
$f(x)=44.932-6.454 \ln x$

x	$F(x)$
1	44.9
3	37.9
7	32.4
9	30.7

