4.12 Linear Transformations and Matrices

AP Precalculus
Name:

Directions: Apply the transformation for each matrix \boldsymbol{A}.

1) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle-3,2\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
b. If $\vec{v}=\langle 1,3\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.
c. Describe the transformation that occurs.

d. What is the general transformation that occurs to $\langle x, y\rangle$.

Directions: Determine if $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\mathrm{T}(\langle x, y\rangle)$ is a linear transformation.
2) $\mathrm{T}(\langle\boldsymbol{x}, \boldsymbol{y}\rangle) \rightarrow\langle\mathbf{2 x}, \boldsymbol{x}-\boldsymbol{y}\rangle$

CALCULATOR ACTIVE:Directions: Function f is the given linear transformation. Identify the matrix expression that would determine the result of the given transformation.
3) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x, 2 x+y\rangle$.

Identify the matrix expression that would determine the result of T: $\langle 0,5\rangle$

$$
\text { 4) } \mathrm{T}(\langle x, y\rangle) \rightarrow\langle 2 x-3 y, 3 x\rangle .
$$

Identify the matrix expression that would determine the result of $\mathrm{T}:\langle 2,-3\rangle$

CA \#1 SOLUTIONS

Directions: Apply the transformation for each matrix \boldsymbol{A}.

1) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle-3,2\rangle$, find $T(\stackrel{\rightharpoonup}{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-4
\end{array}\right] \quad\langle-3,-4\rangle
$$

b. If $\vec{v}=\langle 1,3\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-6
\end{array}\right]
$$

c. Describe the transformation that occurs.

Reflection in $x-a x i s$ and dilation of y component
d. What is the general transformation that occurs to $\langle x, y\rangle$.

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
-2 y
\end{array}\right]=\langle x,-2 y\rangle
$$

$\vec{u}=\left[a_{1}\right.$ Directions: Determine if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(\langle x, y\rangle)$ is a linear transformation.
2) $\mathrm{T}(\langle\boldsymbol{x}, \boldsymbol{y}\rangle) \rightarrow\langle\mathbf{2 x}, \boldsymbol{x}-\boldsymbol{y}\rangle$

$T\left[\begin{array}{l}a_{1}+a_{2} \\ b_{1}+b_{2}\end{array}\right] \stackrel{?}{=}\left[\begin{array}{c}2 a_{1} \\ a_{1}-b_{1}\end{array}\right]+\left[\begin{array}{c}2 a_{2} \\ a_{2}-b_{2}\end{array}\right]$
$\left.\begin{array}{l}{\left[\begin{array}{l}2 a_{1}+2 a_{2} \\ \left(a_{1}+a_{2}-c b_{1}+b_{2}\right.\end{array}\right]} \\ {\left[\begin{array}{r}2 a_{1}+2 a_{2} \\ a_{1}-b_{1}+a_{2}-b_{2}\end{array}\right]=\left[\begin{array}{l}2 a_{1}+2 a_{2} \\ a_{1}-b_{1}+a_{2}-b_{2}\end{array}\right]}\end{array}\right\} \quad\left[\begin{array}{l}c a_{1} \\ c a_{1}-c b_{1}\end{array}\right]=\left[\begin{array}{l}2 c a_{1} \\ C a_{1}-c a_{p}\end{array}\right]$
CALCULATOR ACTIVE: Directions: Function f is the given linear transformation. Identify the matrix expression that would determine the result of the given transformation.
3) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x, 2 x+y\rangle$.

Identify the matrix expression that would determine the result of T: $\langle 0,5\rangle$

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]^{-1} x\left[\begin{array}{l}
6 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
5
\end{array}\right]
$$

4) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle 2 x-3 y, 3 x\rangle$.

Identify the matrix expression that would determine the result of $\mathrm{T}:\langle 2,-3\rangle$

$$
\left[\begin{array}{cc}
2 & -3 \\
3 & 0
\end{array}\right]-1 \times\left[\begin{array}{r}
2 \\
-3
\end{array}\right]=\left\{\left[\begin{array}{c}
-1 \\
-\frac{4}{3}
\end{array}\right]\right.
$$

