4.12 Linear Transformations and Matrices

AP Precalculus
Name:

Directions: Apply the transformation for each matrix \boldsymbol{A}.

1) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle 5,3\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
b. If $\overrightarrow{\mathrm{v}}=\langle-4,-5\rangle$, find $T(\overrightarrow{\mathrm{v}})$ and sketch both $\overrightarrow{\mathrm{v}}$ and $T(\overrightarrow{\mathrm{v}})$.
c. Describe the transformation that occurs.

d. What is the general transformation that occurs to $\langle x, y\rangle$.

Directions: Determine if $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\mathrm{T}(\langle x, y\rangle)$ is a linear transformation.
2) $\mathrm{T}(\langle\boldsymbol{x}, \boldsymbol{y}\rangle) \rightarrow\left\langle\boldsymbol{y}^{2}, \mathbf{2 x}\right\rangle$

Directions: Function f is the given linear transformation. Identify the matrix expression that would determine the result of the given transformation.
3) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x-y, x+y\rangle$.

Identify the matrix expression that would determine the result of $\mathrm{T}:\langle 3,-2\rangle$
4) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle 2 x+y, 3 x-3 y\rangle$.

Identify the matrix expression that would determine the result of $\mathrm{T}:\langle-5,6\rangle$

Directions: Apply the transformation for each matrix \boldsymbol{A}.

1) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle 5,3\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.

$$
\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-5
\end{array}\right]\langle-3,-5\rangle
$$

b. If $\overrightarrow{\mathrm{v}}=\langle-4,-5\rangle$, find $T(\overrightarrow{\mathrm{v}})$ and sketch both $\overrightarrow{\mathrm{v}}$ and $T(\overrightarrow{\mathrm{v}})$.

$$
\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
-4 \\
-5
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]\langle 5,4\rangle
$$

c. Describe the transformation that occurs.

$$
\text { Reflectim in } y=-x
$$

d. What is the general transformation that occurs to $\langle x, y\rangle$.

$$
\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-y \\
-x
\end{array}\right] \quad\langle-y,-x\rangle
$$

$\vec{V}=\left[a_{2}\right]$ Directions: Determine if $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(\langle x, y\rangle)$ is a linear transformation.
 2) $\mathrm{T}(\langle\boldsymbol{x}, \boldsymbol{y}\rangle) \rightarrow\left\langle\boldsymbol{y}^{\mathbf{2}}, \mathbf{2 x}\right\rangle$
 $T(\vec{u}+\vec{v}) \stackrel{?}{=} T(\vec{u})+T(\vec{v})$
 $T\left[\begin{array}{l}a_{1}+d_{2} \\ b_{1}+b_{2}\end{array}\right]^{?}=\left[\begin{array}{l}b_{1}^{2} \\ 2 a_{1}\end{array}\right]+\left[\begin{array}{l}b_{2}^{2} \\ 2 a_{2}\end{array}\right]$
 $\left[\begin{array}{l}\left(b_{1}+b_{2}\right)^{2} \\ 2\left(a_{1}+a_{2}\right)\end{array}\right]=\left[\begin{array}{l}b_{1}^{2}+b_{2}^{2} \\ 2 a_{1}+2 z_{2}\end{array}\right]$
 $\left[\begin{array}{c}b_{1}^{2}+2 b_{1} b_{2}+b_{2} \\ 2 a_{1}+2 a_{2}\end{array}\right]=\xlongequal{x}$

Directions: Function f is the given linear transformation. Identify the matrix expression that would determine the result of the given transformation.
3) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x-y, x+y\rangle$.

Identify the matrix expression that would determine the result of T: $\langle 3,-2\rangle$
$\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}3 \\ -2\end{array}\right]$
$\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right]^{-1} \times\left[\begin{array}{c}3 \\ -2\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$
(C) The Algebros from FlippedMath.com

Identify the matrix expression that would determine the

$$
\begin{aligned}
& \text { result of T: }\langle-5,6\rangle \\
& {\left[\begin{array}{cc}
2 & 1 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-5 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & 1 \\
3 & -3
\end{array}\right]^{-1} \times\left[\begin{array}{c}
-5 \\
6
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{aligned}
$$

