4.12 Linear Transformations and Matrices

AP Precalculus

Name: _____

Directions: Apply the transformation for each matrix <i>A</i> .	
1) Apply the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ if $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$.	
a. If $\vec{u} = \langle 5, 3 \rangle$, find $T(\vec{u})$ and sketch both \vec{u} and	d <i>T</i> (ū).
b. If $\vec{v} = \langle -4, -5 \rangle$, find $T(\vec{v})$ and sketch both \vec{v}	\vec{r} and $T(\vec{v})$.
c. Describe the transformation that occurs.	-6
d. What is the general transformation that occurs to $\langle x, y \rangle$.	
Directions: Determine if T: $\mathbb{R}^2 \to \mathbb{R}^2$ given by T ($\langle x, y \rangle$) is a linear transformation. 2) T ($\langle x, y \rangle$) $\to \langle y^2, 2x \rangle$ Directions: Function <i>f</i> is the given linear transformation. Identify the matrix expression that would determine	
the result of the given transformation. 3) $T(\langle x, y \rangle) \rightarrow \langle x - y, x + y \rangle$.	4) T $(\langle x, y \rangle) \rightarrow \langle 2x + y, 3x - 3y \rangle$.
Identify the matrix expression that would determine the result of T: $(3,-2)$	Identify the matrix expression that would determine the result of T: $\langle -5, 6 \rangle$

Directions: Apply the transformation for each matrix 4.
1) Apply the transformation
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 if $A = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}^2$.
a. If $\overline{u} = (5, 3)$, find $T(\overline{u})$ and sketch both \overline{u} and $T(\overline{u})$.
 $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -5 \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \end{bmatrix} < (-3, -5)$,
b. If $\overline{v} = (-4, -5)$, find $T(\overline{v})$ and sketch both \overline{v} and $T(\overline{v})$.
 $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -5 \end{bmatrix} < \begin{bmatrix} 5 \\ -4 \end{bmatrix} < (-5, 4)$
c. Describe the transformation that occurs.
 $\begin{cases} x_1 f_1 (t_1 \lambda) : x_2 \to t_2^2$ given by $T((x, y))$ is a linear transformation.
2) $\begin{bmatrix} x \\ -1 \\ -5 \end{bmatrix} = \begin{bmatrix} -x \\ -x \end{bmatrix} < (-7, -X)$
d. What is the general transformation that occurs to (x, y)
 $\begin{bmatrix} -1 \\ -5 \end{bmatrix} < y \end{bmatrix} = \begin{bmatrix} -3 \\ -x \end{bmatrix} = (-x)$
 $\begin{bmatrix} -y \\ -y \\ -y \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} = (-x)$
 $\begin{bmatrix} -y \\ -y \\ -y \end{bmatrix} = \begin{bmatrix} -x \\ -y \\ -y \end{bmatrix} = \begin{bmatrix}$