Ex 1: Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle 4,1\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
b. If $\vec{v}=\langle-2,3\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

d. What is the general transformation that occurs to $\langle x, y\rangle$.

If the domain of a function f is \mathbb{R}^{n} and the range is \mathbb{R}^{m}, where m and n could be equal, then f is called a map or transformation from \mathbb{R}^{n} to \mathbb{R}^{m}.

For a function to be a linear transformation it must maintain the following criteria:
a) Vector Addition under a transformation: $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$
b) Scalar Multiplication: $c T(\vec{u})=T(c \vec{u})$

Ex 2: Prove $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle-x, y\rangle$ is a linear transformation.

Ex 3: Determine if $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $\mathrm{T}(\langle x, y\rangle) \rightarrow\left\langle x+y, x^{2}\right\rangle$ is a linear transformation.

Ex 4: Function f is the following linear transformation: $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle 3 x+2 y, 3 y\rangle$.
Identify the matrix expression that would determine the result of $\mathrm{T}:\langle 2,3\rangle$

4.12 Linear Transformations and Matrices

4.12 Practice
 4.12 Practice

AP Precalculus

Directions: Apply the transformation for each matrix \boldsymbol{A}.

1) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle 3,2\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
b. If $\vec{v}=\langle 2,-4\rangle$, find $T(\overrightarrow{\mathrm{v}})$ and sketch both $\overrightarrow{\mathrm{v}}$ and $T(\overrightarrow{\mathrm{v}})$.

c. Describe the transformation that occurs.
d. What is the general transformation that occurs to $\langle x, y\rangle$.
2) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle-4,5\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
b. If $\vec{v}=\langle-2,-4\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

c. Describe the transformation that occurs.
d. What is the general transformation that occurs to $\langle x, y\rangle$.
3) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle-6,3\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
b. If $\vec{v}=\langle 2,-5\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

c. Describe the transformation that occurs.
d. What is the general transformation that occurs to $\langle x, y\rangle$.
4) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x y, x+y\rangle$
5) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle-y,-x\rangle$

Directions: Function f is the given linear transformation. Identify the matrix expression that would determine the result of the given transformation.

7) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x-y, x+3 y\rangle$.	$8) \mathrm{T}(\langle x, y\rangle) \rightarrow\langle x-2 y,-2 x\rangle$.
Identify the matrix expression that would determine the result of $\mathrm{T}:\langle 1,-4\rangle$	Identify the matrix expression that would determine the result of $\mathrm{T}:\langle 0,6\rangle$

11. (2.13A) Solve the equation $\log _{b} a+\log _{b} 5=c$ for a.
(A) $\frac{5}{b^{c}}$
(B) $5 b^{c}$
(C) $b^{c}-5$
(D) $\frac{b^{c}}{5}$
12. (2.13B) When considering the equation $\log (x-3)+\log (5)>\log (x+9)$, which of the following represents the domain of all solutions to the inequality?
(A) $(3, \infty)$
(B) $(5, \infty)$
(C) $(-9, \infty)$
(D) $(6, \infty)$
13. (2.10) Which of the following represents a possible function that is the inverse of $f(x)=0.25^{x}$?
(A)

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	64
-2	16
-1	4
0	1

(B)

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
4	-1
1	0
$\frac{1}{4}$	1
$\frac{1}{16}$	2

(C)

(D)

