AP Precalc

4.12 Notes

b. If
$$\vec{v} = \langle -2, 3 \rangle$$
, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

- c. Describe the transformation that occurs.
- d. What is the general transformation that occurs to $\langle x, y \rangle$.

If the domain of a function f is \mathbb{R}^n and the range is \mathbb{R}^m , where m and n could be equal, then f is called a map or transformation from \mathbb{R}^n to \mathbb{R}^m .

For a function to be a linear transformation it must maintain the following criteria:

- a) Vector Addition under a transformation: $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- b) Scalar Multiplication: $cT(\vec{u}) = T(c\vec{u})$

Ex 2: Prove T: $\mathbb{R}^2 \to \mathbb{R}^2$ given by T ($\langle x, y \rangle$) $\to \langle -x, y \rangle$ is a linear transformation.

Ex 4: Function *f* is the following linear transformation: T ($\langle x, y \rangle$) $\rightarrow \langle 3x + 2y, 3y \rangle$. Identify the matrix expression that would determine the result of T: (2, 3)

4.12 Linear Transformations and Matrices

4.12 Practice

Directions: Determine if T: $\mathbb{R}^2 \to \mathbb{R}^2$ gi	ven by T ($\langle x, y \rangle$) is a linear transformation.
--	---

4)	$T(\langle x, y \rangle)$	$\rightarrow \langle xy, x+y \rangle$	
----	---------------------------	---------------------------------------	--

5) T $(\langle x, y \rangle) \rightarrow \langle -y, -x \rangle$

Directions: Function <i>f</i> is the given linear transformation. Identify the matrix expression that would determine the result of the given transformation.			
7) T $(\langle x, y \rangle) \rightarrow \langle x - y, x + 3y \rangle$.	8) T $(\langle x, y \rangle) \rightarrow \langle x - 2y, -2x \rangle$.		
Identify the matrix expression that would determine the result of T: $(1,-4)$	Identify the matrix expression that would determine the result of T: (0, 6)		
9) T $(\langle x, y \rangle) \rightarrow \langle -y, x \rangle$.	10) T $(\langle x, y \rangle) \rightarrow \langle 2x + 3y, 2x - y \rangle$.		
Identify the matrix expression that would determine the result of T: (10,-3)	Identify the matrix expression that would determine the result of T: $(1,-1)$		

4.12 Linear Transformations and Matrices

11. (2.13A) Solve the equation $\log_b a + \log_b 5 = c$ for *a*.

- (A) $\frac{5}{b^c}$
- (B) 5*b^c*
- (C) $b^{c} 5$
- (D) $\frac{b^c}{5}$
- 12. (2.13B) When considering the equation log(x 3) + log(5) > log(x + 9), which of the following represents the domain of all solutions to the inequality?
 - (A) (3,∞)
 - (B) (5,∞)
 - (C) $(-9, \infty)$
 - (D) (6,∞)

13. (2.10) Which of the following represents a possible function that is the inverse of $f(x) = 0.25^x$?

