4.12 Linear Transformations and Matrices

4.12 Practice Solutions

AP Precalculus

Directions: Apply the transformation for each matrix \boldsymbol{A}.

1) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle 3,2\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
$\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{c}6 \\ -4\end{array}\right]$
b. If $\vec{v}=\langle 2,-4\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

$$
\left[\begin{array}{cc}
2 & 6 \\
0-2
\end{array}\right]\left[\begin{array}{c}
2 \\
-4
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

c. Describe the transformation that occurs. Reflectim $a(0)$)
d. What is the general transformation that occurs to $\langle x, y\rangle$.

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & z
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x \\
-2 y
\end{array}\right]
$$

2) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle-4,5\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{c}-4 \\ 5\end{array}\right]=\left[\begin{array}{c}4 \\ -5\end{array}\right]$
b. If $\vec{v}=\langle-2,-4\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

c. Describe the transformation that occurs.

Reflect in X and Y-axis
d. What is the general transformation that occurs to $\langle x, y\rangle$. $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-x \\ -y\end{array}\right]$
3) Apply the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
a. If $\overrightarrow{\mathrm{u}}=\langle-6,3\rangle$, find $T(\overrightarrow{\mathrm{u}})$ and sketch both $\overrightarrow{\mathrm{u}}$ and $T(\overrightarrow{\mathrm{u}})$.
n

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
-6 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-6
\end{array}\right]
$$

b. If $\vec{v}=\langle 2,-5\rangle$, find $T(\vec{v})$ and sketch both \vec{v} and $T(\vec{v})$.

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
2 \\
-5
\end{array}\right]=\left[\begin{array}{c}
-5 \\
2
\end{array}\right]
$$

c. Describe the transformation that occurs.

$$
\text { Reflection in } \quad y=x \text {. }
$$

d. What is the general transformation that occurs to $\langle x, y\rangle$. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]<\left[\begin{array}{l}y \\ x\end{array}\right]$

© The Algebros from FlippedMath.com

Directions: Function f is the given linear transformation. Identify the matrix expression that would determine the result of the given transformation.
7) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x-y, x+3 y\rangle$.

Identify the matrix expression that would determine
the result of T: $\langle 1,-4\rangle$
$\left[\begin{array}{cc}1 & -(-1 \\ 1 & 3\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}y \\ y\end{array}\right]=\left[\begin{array}{c}1 \\ -4\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right]^{-1} x\left[\begin{array}{c}1 \\ -4\end{array}\right]$

9) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle-y, x\rangle$.

Identify the matrix expression that would determine the result of T: $\langle 10,-3\rangle$

8) $\mathrm{T}(\langle x, y\rangle) \rightarrow\langle x-2 y,-2 x\rangle$.

Identify the matrix expression that would determine
the result of T: $\langle 0,6\rangle$
$\left[\begin{array}{cc}1 & -2 \\ -2 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 6\end{array}\right]$

Identify the matrix expression that would determine the result of T: $\langle 1,-1\rangle$
$\left[\begin{array}{cc}2 & 3 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

4.12 Test Prep

11. (2.13A) Solve the equation $\log _{b} a+\log _{b} 5=c$ for a.
(A) $\frac{5}{b^{c}}$
(C) $b^{c}-5$

$$
\begin{aligned}
\log _{b} 5 a & =c \\
\frac{b}{5} & =\frac{5 a}{5}
\end{aligned}
$$

(D) $\frac{b^{c}}{5}$
$x>3$
$x>-9$
12. (2.13B) When considering the equation $\log (x-3)+\log (5)>\log (x+9)$, which of the following represents the domain of all solutions to the inequality?

(B) $(5, \infty)$
(C) $(-9, \infty)$
(D) $(6, \infty)$
13. (2.10) Which of the following represents a possible function that is the inverse of $f(x)=0.25^{x}$?
(A)

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	64
-2	16
-1	4
0	1

$f(x)=.25^{X}$
(B) $f^{-1}(x)$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
4	-1
1	0
$\frac{1}{4}$	1
$\frac{1}{16}$	2

multiplication
the

(D)

is on x-values

