AP Precalc

Write your questions and thoughts here!

General Form of a Linear Transformation of a Vector in a Plane:

$$
\langle x, y\rangle \text { to }\left\langle a_{11} x+a_{12} y, \quad a_{21} x+a_{22} y\right\rangle
$$

is associated with the matrix

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Why?

Ex 1: Given the linear transformation T, that maps $\langle x, y\rangle$ to $<3 x-y, 4 x+2 y\rangle$, find the associated matrix with T .

Ex 2: Find the linear transformation associated with the given matrix.

$$
\left[\begin{array}{cc}
4 & 7 \\
-2 & -1
\end{array}\right]
$$

Counterclockwise Rotation Matrix

Maps a rotation that is an angle counterclockwise rotation about the origin from the original vector

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Suppose you have vector $\vec{u}=\langle 3,4\rangle$
Ex 3: What is the result rotating $\frac{\pi}{2}$ radians counterclockwise about the origin?

Ex 4: What is the result rotating $\frac{\pi}{4}$ radians counterclockwise about the origin?

Ex 5: Consider the transformation, what is the image of $\vec{u}=\langle 2,4\rangle$ under each transformation?
a. The x-coordinate triples and the y-coordinate doubles.
b. $\langle x, y\rangle$ to $\langle 2 x+3 y,-2 x+y\rangle$

4.13A Matrices as Functions

AP Precalculus
Directions: Given the linear transformation, find the associated matrix with that transformation.

| 1) $<x, y>$ to $<x-y, x+y>$ | $2)<x, y>$ to $<2 x+3 y, 3 x+9 y>$ | $3)<x, y>$ to $<-y, 4 x+5 y>$ |
| :--- | :--- | :--- | :--- |

Directions: Find the resulting vector from rotating the given vector by the given angle.

7) $\stackrel{\rightharpoonup}{u}=\langle 2,-3\rangle$ rotated $\frac{\pi}{2}$ radians counterclockwise.	8)counterclockwise. coun
9) $\vec{v}=\langle 4,1\rangle$ rotated $\frac{\pi}{6}$ radians counterclockwise.	$10) \vec{u}=\langle-6,-4\rangle$ rotated π radians counterclockwise.

Directions: Considering the given transformation, what is the image of the given vector under the transformation.

| 11) The x- and y-coordinates are dilated by a | $12)\langle x, y\rangle$ to $\langle x+2 y,-2 x-y\rangle$ and $\vec{u}=\langle 4,6\rangle$ |
| :--- | :--- | :--- |
| factor of 4 and $\vec{u}=\langle 3,-2\rangle$ | |
| | |

4.13A Matrices as Functions

15. (3.2B) An angle is in standard position in the xy-plane. Which of the following is true about θ on the interval $0 \leq \theta \leq 2 \pi$ if $\cos \theta<0$?
(A) There is no value of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos <0$.
(B) There are values of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos <0$ in all four Quadrants.
(C) There is a value of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos <0$ in Quadrant II only.
(D) There are values of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos <0$ in Quadrants II and III only.
16. (3.5) The figure shows the graph of a periodic function f in the $x y$-plane. What is the frequency of f ?

(A) $\frac{1}{8}$
(B) $\frac{\pi}{8}$
(C) $\frac{\pi}{4}$
(D) 8
17. (3.6A) The table gives ordered pairs for seven points from a larger data set. The larger data set can be modeled by a sinusoidal function f with a period of 6 . The minimum values of the data set occur at x-values that are multiples of 6 .

x	0	1	2	3	4	5	6
$f(x)$	-4	-1	3	6	3	-1	-4

Which of the following best defines $f(x)$ for the larger data set?
(A) $-4 \cos (12 \pi x)+1$
(B) $-4 \cos \left(\frac{\pi}{3} x\right)+1$
(C) $-5 \cos (12 \pi x)+1$
(D) $-5 \cos \left(\frac{\pi}{3} x\right)+1$

