AP Precalc

4.13A Matrices as Functions

Write your questions and thoughts here!

General Form of a Linear Transformation of a Vector in a Plane:

$$\langle x,y \rangle$$
 to $\langle a_{11}x + a_{12}y, a_{21}x + a_{22}y \rangle$
is associated with the matrix
 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$

Why?

Ex 1: Given the linear transformation T, that maps $\langle x, y \rangle$ to $\langle 3x - y, 4x + 2y \rangle$, find the associated matrix with T.

Ex 2: Find the linear transformation associated with the given matrix. $\begin{bmatrix} 4 & 7 \\ -2 & -1 \end{bmatrix}$

Counterclockwise Rotation Matrix

Maps a rotation that is an angle counterclockwise rotation about the origin from the original vector

 $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Suppose you have vector $\vec{u} = \langle 3, 4 \rangle$ Ex 3: What is the result rotating $\frac{\pi}{2}$ radians counterclockwise about the origin?

Ex 4: What is the result rotating $\frac{\pi}{4}$ radians counterclockwise about the origin?

4.13A Notes

Write your questions

Ex 5: Consider the transformation, what is the image of $\vec{u} = \langle 2, 4 \rangle$ under each transformation?

a. The x-coordinate triples and the y-coordinate doubles.

b. $\langle x, y \rangle$ to $\langle 2x + 3y, -2x + y \rangle$

4.13A	Matrices	as Functions
-------	----------	--------------

4.13A Practice

AP	Precalculus	4.13 A 1 lactice						
	Directions: Given the linear transformation, find the associated matrix with that transformation.							
	1) $\langle x, y \rangle$ to $\langle x - y, x + y \rangle$	2) $<$ x, y> to $<$ 2x + 3y, 3x + 9y>	(3) < x, y > to <-y, 4x + 5y >					
	Directions: Find the linear transform	nation given the associated matrix.						
	$4)\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$	$5)\begin{bmatrix}3 & 4\\1 & -3\end{bmatrix}$	${}^{(6)}\begin{bmatrix}5&0\\-3&-2\end{bmatrix}$					

Directions: Find the resulting vector from rotating the given vector by the given angle.						
7) $\vec{u} = \langle 2, -3 \rangle$ rotated $\frac{\pi}{2}$ radians	8) $\vec{v} = \langle -4, 8 \rangle$ rotated $\frac{\pi}{4}$ radians					
counterclockwise.	counterclockwise.					
9) $\vec{v} = \langle 4, 1 \rangle$ rotated $\frac{\pi}{2}$ radians counterclockwise.	10) $\vec{u} = \langle -6, -4 \rangle$ rotated π radians					
6	counterclockwise.					
Directions: Considering the given transformation	on, what is the image of the given vector under					
the transformation.						
11) The x- and y-coordinates are dilated by a	12) $\langle x, y \rangle$ to $\langle x + 2y, -2x - y \rangle$ and $\overrightarrow{u} = \langle 4, 6 \rangle$					
factor of 4 and $\vec{u} = \langle 3, -2 \rangle$						
13) The x-coordinate doubles, the y-coordinate	14) $\langle x, y \rangle$ to $\langle 3x - y, -x + 7y \rangle$ and $\overrightarrow{u} =$					
quadruples and $\vec{u} = \langle -1, -5 \rangle$	(-3,3)					

4.13A Matrices as Functions

15. (3.2B) An angle is in standard position in the xy-plane. Which of the following is true about θ on the interval $0 \le \theta \le 2\pi$ if $\cos \theta < 0$?

4.13A Test Prep

- (A) There is no value of θ on $0 \le \theta \le 2\pi$ for which $\cos < 0$.
- (B) There are values of θ on $0 \le \theta \le 2\pi$ for which $\cos < 0$ in all four Quadrants.
- (C) There is a value of θ on $0 \le \theta \le 2\pi$ for which $\cos < 0$ in Quadrant II only.
- (D) There are values of θ on $0 \le \theta \le 2\pi$ for which $\cos < 0$ in Quadrants II and III only.

16. (3.5) The figure shows the graph of a periodic function f in the xy-plane. What is the frequency of f?

17. (3.6A) The table gives ordered pairs for seven points from a larger data set. The larger data set can be modeled by a sinusoidal function f with a period of 6. The minimum values of the data set occur at x-values that are multiples of 6.

x	0	1	2	3	4	5	6
f(x)	-4	-1	3	6	3	-1	-4

Which of the following best defines f(x) for the larger data set?

- (A) $-4\cos(12\pi x) + 1$
- (B) $-4\cos(\frac{\pi}{3}x) + 1$ (C) $-5\cos(12\pi x) + 1$
- (D) $-5\cos\left(\frac{\pi}{3}x\right) + 1$

© The Algebros from FlippedMath.com