4.13A Matrices as Functions

AP Precalculus
4.13A Practice Solutions

Directions: Given the linear transformation, find the associated matrix with that transformation.

Directions: Find the linear transformation given the associated matrix.

7) $\vec{u}=\langle 2,-3\rangle$ rotated $\frac{\pi}{2}$ radians counterclockwise.

9) $\vec{v}=\langle 4,1\rangle$ rotated $\frac{\pi}{6}$ radians counterclockwise.
$\left[\begin{array}{cc}\cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{6}\end{array}\right]=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$

8) $\vec{v}=\langle-4,8\rangle$ rotated $\frac{\pi}{4}$ radians counterclockwise.
$\left[\begin{array}{cc}\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4}\end{array}\right]=\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$
$\left.\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\left[\begin{array}{c}-4 \\ 8\end{array}\right]=\left[\begin{array}{cc}-\frac{4 \sqrt{2}}{2} & -\frac{8 \sqrt{2}}{2} \\ -\frac{4 \sqrt{2}}{2}+\frac{8 \sqrt{2}}{2}\end{array}\right]=\left[\begin{array}{c}-\frac{12 \sqrt{2}}{2} \\ \frac{4 \sqrt{2}}{2}\end{array}\right]=\left[\begin{array}{c}6 \sqrt{2} \\ 2 \sqrt{2}\end{array}\right], 2 \sqrt{2}\right\rangle$
10) $\vec{u}=\langle-6,-4\rangle$ rotated π radians counterclockwise
$\left[\begin{array}{cc}\cos \pi & -\sin \pi \\ \sin \pi & \cos \pi\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

11) The x - and y-coordinates are dilated by a factor of 4 and $\vec{u}=\langle 3,-2\rangle$

13) The x-coordinate doubles, the y-coordinate quadruples and $\vec{u}=\langle-1,-5\rangle$

4.13A Matrices as Functions

4.13A Test Prep

15. (3.2B) An angle is in standard position in the xy-plane. Which of the following is true about θ ap the interval $0 \leq \theta \leq 2 \pi$ ir $\cos \theta<\theta$? 0
(A) There is no value θ of on $0 \leq \theta \leq 2 \pi$ for which $\cos <0$.

$$
\text { cos } \Rightarrow x-\text { values }
$$

(B) There are values θ of on $0 \leq \theta \leq 2 \pi$ for which $\cos \theta<0$ in all four Quadrants.
(C) There is a value of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos \theta<0$ in Quadrant II only.

(D) There are values of θ on $0 \leq \theta \leq 2 \pi$ for which $\cos \theta<0$ in Quadrants II and III only.
16. (3.5) The figure shows the graph of a periodic function f in the $x y$-plane. What is the frequency of f ?

Graph of f
(A) $\frac{1}{8}$
(B) $\frac{\pi}{8}$
(C) $\frac{\pi}{4}$
(D) 8
17. (3.6A) The table gives ordered pairs for seven points from a larger data set. The larger data set can be modeled by a sinusoidal function f with a period of 6 . The minimum values of the data set occur at x-values that are multiples of 6 .

x	0	1	2	3	4	5	6
$f(x)$	-4	-1	3	6	3	-1	-4

Which of the following best defines $f(x)$ for the larger data set?

$$
\begin{aligned}
& \text { (A) }-4 \cos (12 \pi x)+1 \\
& \text { (B) }-4 \cos \left(\frac{\pi}{3} x\right)+1 \\
& \text { (C) }-5 \cos (12 \pi x)+1 \\
& \text { (D) }-5 \cos \left(\frac{\pi}{3} x\right)+1
\end{aligned}
$$

Per $=6$

