4.13B Matrices as Functions

AP Precalculus

Directions: Matrix A and B represent the transformations T and U respectively. Find the associated matrix for the composition of the function and then find the vector after the given transformation.

1) Find the associated matrix and $T(U(\vec{v}))$.
2) Find the associated matrix and $U(T(\vec{v}))$.
$A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right], \vec{v}=\langle-3,2\rangle$
$A=\left[\begin{array}{cc}-1 & 4 \\ 0 & -3\end{array}\right], B=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right], \vec{v}=\langle 3,6\rangle$
3) Find the associated matrix and $U(T(\stackrel{\rightharpoonup}{v}))$.
$A=\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \vec{v}=\langle-5,-2\rangle$

Directions: Find the associated matrix to the composition of transformations.
5) Rotation of $\frac{\pi}{2}$ radians counterclockwise and reflected in both x - and y -axes.
6) Horizontal and vertical dilation of 4, and a rotation of $\frac{3 \pi}{2}$ radians counterclockwise.

Directions: Given $\overrightarrow{\boldsymbol{v}}$ find the vector $\overrightarrow{\boldsymbol{u}}$, that was transformed by matrix \boldsymbol{A} to get $\overrightarrow{\boldsymbol{v}}$.
7) $\vec{v}=\langle 3,-9\rangle$ and $A=\left[\begin{array}{ll}3 & 6 \\ 2 & 3\end{array}\right]$.
8) $\vec{v}=\langle-6,4\rangle$ and $A=\left[\begin{array}{ll}8 & -6 \\ 3 & -2\end{array}\right]$.

ANSWERS

1) $\left[\begin{array}{ll}8 & 8 \\ 7 & 7\end{array}\right],\langle-8,-7\rangle$
2) $\left[\begin{array}{cc}-2 & 5 \\ 1 & -13\end{array}\right],\langle 24,-75\rangle$
3) $\left[\begin{array}{cc}1 & -2 \\ 6 & 24\end{array}\right],\langle 16,-84\rangle$
4) $\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right],\langle 7,-7\rangle$
5) $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
6) $\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]$
7) $\langle-21,11\rangle$
8) $\langle 18,25\rangle$
