## AP Precalc



Composition of Two Linear Transformations

You apply one transformation and then the other one.

Transformation T and U denoted by  $T(U(\vec{v}))$  means we apply U then T.

If Transformation *T* is associated with matrix *A*, and transformation *U* is associated with matrix *B*, then the product of the matrices is the composition of the overall transformation.  $T(U(\vec{v})) = AB$ 

Ex 1: Matrix A and B represent the transformations T and U respectively. Find the associated matrix for the composition of the function and then find  $T(U(\vec{v}))$ 

 $A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & 6 \\ -2 & 3 \end{bmatrix}, \vec{v} = \langle 4, 3 \rangle$ 

Ex 2: Find the associated matrix for the composition of the function and then find  $U(T(\vec{v}))$ .  $A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & 6 \\ -2 & 3 \end{bmatrix}, \vec{v} = \langle 4, 3 \rangle$ 

Ex 3: Find the associated matrix to the composition of transformations with reflection across the x-axis and a rotation of  $\frac{\pi}{2}$ .

Suppose *T* is a linear transformation represented by the matrix  $A = \begin{bmatrix} 1 & 1 \\ 4 & 2 \end{bmatrix}$ . Given  $\vec{v} = \langle 10, 4 \rangle$  find the vector,  $\vec{u}$  that was transformed by *A* to get  $\vec{v}$ .

## 4.13B Matrices as Functions

**AP Precalculus** 

Write your questions

-

## **4.13B** Practice

| Directions: Matrix A and B represent the transformations T and U respectively. Find the associated                                       |                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| matrix for the composition of the function and then find the vector after the given transformation.                                      |                                                                                                                                          |
| 1) Find the associated matrix and $T(U(\vec{v}))$ .                                                                                      | 2) Find the associated matrix and $U(T(\vec{v}))$ .                                                                                      |
| $A = \begin{bmatrix} -2 & -1 \\ 3 & 5 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 \\ -4 & 1 \end{bmatrix}, \vec{v} = \langle 2, -5 \rangle$ | $A = \begin{bmatrix} -2 & -1 \\ 3 & 5 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 \\ -4 & 1 \end{bmatrix}, \vec{v} = \langle 2, -5 \rangle$ |
| 3) Find the associated matrix and $T(U(\vec{v}))$ .                                                                                      | 4) Find the associated matrix and $U(T(\vec{v}))$ .                                                                                      |
| $A = \begin{bmatrix} 4 & -2 \\ -4 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \vec{v} = \langle -3, -4 \rangle$ | $A = \begin{bmatrix} 4 & -2 \\ -4 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \vec{v} = \langle -3, -4 \rangle$ |

**Directions:** Given 
$$\vec{v}$$
 find the vector  $\vec{u}$ , that was transformed by matrix *A* to get  $\vec{v}$ .  
(a)  $\vec{v} = (-4,2)$  and  $A = \begin{bmatrix} 6 & -5 \\ 3 & -3 \end{bmatrix}$ .  
(b)  $\vec{v} = (-2, -3)$  and  $A = \begin{bmatrix} -4 & -3 \\ -3 & -2 \end{bmatrix}$ .

## **4.13B Matrices as Functions**

- 10) (3.8) The graph of  $f(x) = \tan(bx)$ , where b is a constant, is shown in the xy-plane. What is the value of b?
  - (A) 4
  - (C)  $\frac{\pi}{2}$

2

**(B)** 

(D)  $\frac{\pi}{4}$ 

11) (3.10) The function g is given by  $g(x) = 2\cos(x)$ . What are all solutions  $g(x) = \sqrt{3}$ ?

(A)  $x = \frac{\pi}{6} + 2\pi k$  and  $\frac{5\pi}{6} + 2\pi k$ , where k is any integer (B)  $x = \pm \frac{\pi}{6} + 2\pi k$ , where k is any integer (C)  $x = \frac{\pi}{3} + 2\pi k$  and  $\frac{2\pi}{3} + 2\pi k$ , where k is any integer (D)  $x = \pm \frac{\pi}{3} + 2\pi k$ , where k is any integer

12) (3.13) The point A has polar coordinates  $\left(4, \frac{7\pi}{6}\right)$ . Which of the following also gives the location of point A in polar coordinates?

(A)  $\left(4, -\frac{11\pi}{6}\right)$ (B)  $\left(4, -\frac{5\pi}{6}\right)$ (C)  $\left(-4, -\frac{\pi}{6}\right)$ (D)  $\left(-4, -\frac{5\pi}{6}\right)$ 

