4.13B Matrices as Functions

AP Precalculus

Directions: Matrix A and B represent the transformations T and U respectively. Find the associated matrix for the composition of the function and then find the vector after the given transformation.

1) Find the associated matrix and $T(U(\vec{v}))$.

2) Find the associated matrix and $U(T(\vec{v}))$.

$$
A=\left[\begin{array}{cc}
-2 & -1 \\
3 & 5
\end{array}\right], B=\left[\begin{array}{cc}
0 & 2 \\
-4 & 1
\end{array}\right], \vec{v}=\langle 2,-5\rangle
$$

$$
B A=\left[\begin{array}{cc}
0 & 2 \\
-4 & 1
\end{array}\right]\left[\begin{array}{cc}
-2 & -1 \\
3 & 5
\end{array}\right]\left\{\left[\begin{array}{cc}
6 & 16 \\
11 & 9
\end{array}\right]\right\}
$$

$$
U(T(\vec{V}))=\left[\begin{array}{cc}
6 & 10 \\
11 & 9
\end{array}\right]\left[\begin{array}{l}
2 \\
-5
\end{array}\right]
$$

4) Find the associated matrix and $U(T(\vec{v}))$.

$$
A=\left[\begin{array}{cc}
4 & -2 \\
-4 & 3
\end{array}\right], B=\left[\begin{array}{cc}
1 & 3 \\
3 & 1
\end{array}\right], \vec{v}=\langle-3,-4\rangle
$$

$$
B A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & -2 \\
-4 & 3
\end{array}\right]\left\{\left[\begin{array}{cc}
-8 & 7 \\
8 & -3
\end{array}\right]\right\}
$$

Directions: Find the associated matrix to the composition of transformations.

6) Rotation of $\frac{\pi}{2}$ radians counterclockwise and a horizontal and vertical dilation of 4 units $(\langle 4 x+0,0 x+4 y\rangle$

$$
\begin{array}{ll}
A=\left[\begin{array}{cc}
\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\
\sin \frac{\pi}{2} & \cos \frac{\pi}{2}
\end{array}\right] & B=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \\
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] & B A=\left[\begin{array}{cc}
4 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left\{\left[\begin{array}{cc}
0 & -4 \\
4 & 0
\end{array}\right]\right\}
\end{array}
$$

Directions: Given \vec{v} find the vector \vec{u}, that was transformed by matrix A to get \vec{v}.
7) $\vec{v}=\langle-4,2\rangle$ and $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right]$.

$$
A \times \vec{V}=\vec{V}
$$

$$
A_{A^{-1}=\frac{1}{6-4}\left[\begin{array}{cc}
2 & -2 \\
-2 & 3
\end{array}\right]}^{\sim}
$$

$$
\begin{aligned}
& \vec{U}=\left[\begin{array}{cc}
1 & -1 \\
-1 & \frac{3}{2}
\end{array}\right]\left[\begin{array}{r}
-4 \\
2
\end{array}\right] \\
& \vec{U}=\left[\begin{array}{c}
-6 \\
7
\end{array}\right] \\
& \vec{U}=\langle-6,7\rangle
\end{aligned}
$$

$$
=\frac{1}{2}\left[\begin{array}{cc}
2 & -2 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-1 & \frac{3}{2}
\end{array}\right]
$$

8) $\vec{v}=\langle 9,-3\rangle$ and $A=\left[\begin{array}{ll}6 & -5 \\ 3 & -3\end{array}\right]$.

$$
A \times \vec{U}=\vec{V}
$$

$$
\stackrel{\rightharpoonup}{U}=A^{-1} \times \vec{V}
$$

$$
A^{-1}=\frac{1}{-18+15}\left[\begin{array}{ll}
-3 & 5 \\
-3 & 6
\end{array}\right]
$$

$$
\begin{aligned}
& =-18+15\left[\begin{array}{ll}
-3 & 6
\end{array}\right] \\
& =\frac{1}{-3}\left[\begin{array}{cc}
-3 & 5 \\
-3 & 6
\end{array}\right]=\left[\begin{array}{cc}
1 & -\frac{5}{3} \\
1 & -2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{V}=\left[\begin{array}{cc}
1 & -\frac{5}{3} \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
9 \\
-3
\end{array}\right] \\
& \vec{U}=\left[\begin{array}{c}
14 \\
15
\end{array}\right] \\
& \vec{U}=\langle 14,15\rangle
\end{aligned}
$$

9) $\vec{v}=\langle-2,-3\rangle$ and $A=\left[\begin{array}{ll}-4 & -3 \\ -3 & -2\end{array}\right]$.

$$
A \times \stackrel{\rightharpoonup}{U}=\vec{V}
$$

$$
A^{-1}=\frac{1}{8-9}\left[\begin{array}{cc}
-2 & 3 \\
3 & -4
\end{array}\right]
$$

$$
\begin{aligned}
& \vec{U}=\left[\begin{array}{cc}
2 & -3 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
-2 \\
-3
\end{array}\right] \\
& \vec{U}=\left[\begin{array}{c}
5 \\
-6
\end{array}\right] \\
& \vec{U}=\langle 5,-6\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =-1\left[\begin{array}{cc}
-2 & 3 \\
3 & -9
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & -3 \\
-3 & 4
\end{array}\right]
\end{aligned}
$$

10) (3.8) The graph of $f(x)=\tan (b x)$, where b is a constant, is shown in the $x y$-plane. What is the value of b ?

$$
\text { Per }=4
$$

(A) 4
(B) 2
(C) $\frac{\pi}{2}$
$\frac{\pi}{b}=4$
$\underbrace{2}$
$\frac{\pi}{4}=b$
(D) $\frac{\pi}{4}$

11) (3.10) The function g is given by $g(x)=2 \cos (x)$. What are all solutions $g(x)=\sqrt{3}$?
(A) $x=\frac{\pi}{6}+2 \pi k$ and $\frac{5 \pi}{6}+2 \pi k$, where k is any integer

$$
\sqrt{3}=2 \cos x
$$

(B) $x= \pm \frac{\pi}{6}+2 \pi k$, where k is any integer
(C) $x=\frac{\pi}{3}+2 \pi k$ and $\frac{2 \pi}{3}+2 \pi k$, where k is any integer

(D) $x= \pm \frac{\pi}{3}+2 \pi k$, where k is any integer
12) (3.13) The point A has polar coordinates $\left(4, \frac{7 \pi}{6}\right)$. Which of the following also gives the location of point A in polar coordinates?
(A) $\left(4,-\frac{11 \pi}{6}\right)$
(B) $\left(4,-\frac{5 \pi}{6}\right)$
(C) $\left(-4,-\frac{\pi}{6}\right)$

(D) $\left(-4,-\frac{5 \pi}{6}\right)$

