

Ex 1 : Find the magnitude: $<-4,8>$

Ex 2: Find the components of the vector, \mathbf{u}.
$\|\mathbf{u}\|=15, \theta=60^{\circ}$

Ex 3: Find the components of the vector, \mathbf{v}.
$\|\mathbf{v}\|=6, \theta=160^{\circ}$

SCALAR MULTIPLICATION

$\mathrm{s}<\mathrm{a}, \mathrm{b}>=<\mathrm{sa}, \mathrm{sb}>$

Ex 4. Multiply by the scalar, draw both vectors and compare.
a. $2<3,-2>$
b. $-2<3,-2>$

What happens with the direction of the vector when you multiply by a scalar? and thoughts here!

Vector Addition
$<a_{1}, b_{1}>+<a_{2}, b_{2}>=<a_{1}+a_{2}, b_{1}+b_{2}>$

Graphically, we align the vectors Tip to Tail and find the result.

Ex $5:<3,-2>+<2,5>$
Algebraically:

Graphically:

YOU TRY!

1) $\mathbf{u}=\langle 4,2\rangle, \mathbf{v}=\langle-3,5>$
a. Find $\|\mathbf{u}\|$
b. Find $2 \mathbf{u}-3$
2) Find the components to the vector with $\|\mathbf{v}\|=10, \theta=220^{\circ}$

4.8A Vectors

4.8A Practice

AP Precalculus
Instructions: Graph each vector from the origin. Find the magnitude.

	1) $\langle-5,2\rangle$ 2) $\langle 6,-3\rangle$ 3) $\langle-3,-5\rangle$							
Directions: Find the components of the vector given the magnitude and direction.								
4) $\\|\mathbf{v}\\|=4, \theta=20^{\circ}$	5) $\\|\mathbf{w}\\|=18, \theta=300^{\circ}$	6) $\\|\mathbf{u}\\|=7, \theta=115^{\circ}$						

4.8A Vectors

4.8A Test Prep

12) A continuous function f is defined on the closed interval $-5<x<6$ and is shown in the graph below. For how many values of $b,-5<b<6$, is the average rate of change of f on the interval $[b, 5]$ equal to 0 ? Give a reason for your answer.

13) No calculator allowed! The polynomial function g is given by $g(x)=(x-6)\left(x^{2}+2 x+2\right)$. Which of the following describes the zeros of g ?
(A) g has exactly two distinct real zeros.
(B) g has exactly three distinct real zeros.
(C) g has exactly one distinct real zero and no non-real zeros.
(D) g has exactly one distinct real zero and two non-real zeros.
14. The following polynomial function f is given by $f(x)=-7 x^{6}+2 x^{2}+4$. Which of the following statements about the end behavior of f is true?
(A) The sign of the leading term of f is positive, and the degree of the leading term of f is even; therefore, $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.
(B) The sign of the leading term of f is negative, and the degree of the leading term of f is odd; therefore, $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$.
(C) The sign of the leading term of f is positive, and the degree of the leading term of f is odd; therefore, $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.
(D) The sign of the leading term of f is negative, and the degree of the leading term of f is even; therefore, $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$.
