4.8A Vectors

4.8A Practice Solutions

AP Precalculus
Instructions: Graph each vector from the origin. Find the magnitude.

Directions: Find the components of the vector given the magnitude and direction.

4.8A Test Prep

12) A continuous function f is defined on the closed interval $-5<x<6$ and is shown in the graph below. For how many values of $b,-5<b<6$, is the average rate of change of f on the interval $[b, 5]$ equal to 0 ? Give a reason for your answer.

If the average rate of change equals zero, then it would create a horizontal line. (slope of zero).

Since $f(5)=-2$, we must find other occurrences where $f(b)=-2$. This occurs at two values of $b . b=-4$ and $b=3$.
13) No calculator allowed! The polynomial function g is given by $g(x)=(x-6)\left(x^{2}+2 x+2\right)$. Which of the following describes the zeros of g ?
$x=6$
|real
(A) g has exactly two distinct real zeros.
(B) g has exactly three distinct real zeros.
(C) g has exactly one distinct real zero and no non-real zeros.
(D) g has exactly one distinct real zero and two non-real zeros.
14. The following polynomial function f is given by $f(x)=-7 x^{6}+2 x^{2}+4$. Which of the following statements about the end behavior of f is true?

(f) The sign of the leading term of f is p sitive, and the degree of the leading term of f is even; therefore, $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.
(\$) The sign of the leading term of f is negative, and the degree of the leading term of f is $f \mathrm{dd}$; therefore, $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$.
(C) The sign of the leading term of f is posifive, and the degree of the leading term of $f \not f s$ odd; therefore, $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.
(D) The sign of the leading term of f is negative, and the degree of the leading term of f is even; therefore, $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$.

