$$
\begin{aligned}
& \text { 3) }\langle-5,8\rangle \\
& \|v\|=\sqrt{(-5)^{2}+(8)^{2}}=-\sqrt{89} \\
& \left\langle\frac{-5}{\sqrt{89}}, \frac{8}{\sqrt{89}}\right\rangle
\end{aligned}
$$

Instructions: Find the angle between the two vectors.

4.8B Vectors

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& c^{2}=20^{2}+8^{2}-2(20)(8) \cos 115 \\
& c^{2}=464-320 \cos 115 \\
& c^{2}=599.24 \\
& c=24.5
\end{aligned}
$$

11) An airplane takes off in the direction of 30° north of west at a speed of 400 mph . The wind current is blowing at 20° east of north at a speed of 25 mph . What is the ground speed and direction of the plane?

$$
c^{2}=a^{2}+b^{2}-2 a b \cos c
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos 2 \\
& c^{2}=25^{2}+400^{2}-2(400)(25) \cos 100^{\circ}
\end{aligned}
$$

$$
c^{2}=160625-20000 \cos 100
$$

$$
c^{2}=143378.6224
$$

$$
c=378.7 \mathrm{mph} \quad \frac{\sin \theta}{25}=\frac{\sin 100}{378 \cdot 7}
$$

$$
30+t=30+3.7
$$

$$
\begin{aligned}
& \sin \theta=\frac{25 \cdot \sin 100}{378.7} \\
& \theta=\sin ^{-1}\left(\frac{22 \cdot \sin 100}{378.7}\right)
\end{aligned}
$$

12. (1.7A) Given $f(x)=x^{2}+a^{2}$ and $g(x)=x^{2}-a^{2}$ where a is a constant integer. The function $r(x)=$ $\frac{f(x)}{g(x)}$. What is the domain of $r(x)$?
(A) $(-\infty,-a) \cup(a, \infty)$

$$
\frac{x^{2}+a^{2}}{x^{2}-a^{2}}=\frac{x^{2}+a^{2}}{(x-a)(x+a)}
$$

(B) $(-a, a)$
(C) $(-\infty,-a) \cup(-a, a) \cup(a, \infty)$
(D) $(-\infty,-a)$
(E) (a, ∞)

13. (1.7B) The function f is given by $f(x)=\frac{a x^{3}-2 x^{2}+5}{2 x^{3}-8}$ and has line $y=3$ as a horizontal asymptote. Which of the following must be true?
(A) $f(a)=6$
(B) $a=6$
(C) $\lim _{x \rightarrow \infty} f(x)=a$
(D) $\lim _{x \rightarrow \infty} f(x)=6$ Divide leading coefferments if degree of numerator and denominator are the same to finl horizontal asymptote.

So $\quad \frac{a}{2}=3$
$a=6$
(E) None of the above are true.
14. (1.8) The function f is given by $f(x)=\frac{x^{2}+2 x-24}{4-x}$. Which of the following describes the function f ?
(A) The graph of f has an x-intercept at $x=-6$ and a vertical asymptote of $x=4$.
(B) The graph of f has an x-intercept at $x=-6$ and a hole at $x=4$.
(C) The graph of f has an x-intercept at $x=-6$ and a vertical asymptote of $x \neq-4$.
(D) The graph of f has an x-intercept at $x \mathcal{Y}-6$ and a hole at $x_{\overline{\mathcal{F}}}-4$.
(E) The graph of f has x-intercepts at $x \approx-6$ and $x=\not 4$.

$$
\begin{aligned}
& \text { Lint: } y=0^{2}+2(0)-2 \\
& y=\frac{-24}{4} \\
& y=-6 \\
&(0,-6) \\
& \text { Pint: } 0=\left(x+(x)=\frac{(x+6)(x-4)}{-(x-4)}\right. \\
& 0=x+6 \quad(-6,0) \\
&-4=x
\end{aligned}
$$

