Directions: For the given vector-valued functions, complete the table and sketch the graph that the endpoints make.

1) $f(t)=\left\langle 3 t+1,-t^{2}\right\rangle$.

t	x	y
-2		
-1		
0		
1		
2		

2) $f(t)=\left\langle 4 \cdot 2^{t}, 2 \cdot 2^{-t}\right\rangle$.

t	x	y
-2		
-1		
0		
1		
2		

Directions: Find the domains of the vector-valued function.
3) $f(t)=\left\langle\frac{4}{t+5}, \sqrt{t-5}+5\right\rangle$
4) $f(t)=\left\langle 3 t^{3}, t+2\right\rangle$

Directions: Describe the motion and find the speed of a particle in motion with the following vector at the given time.
5) $v(t)=\left\langle t+5, t^{3}-t^{2}\right\rangle, t=-3$
6) $v(t)=\langle 5 t+1, \sqrt{t+4}+9\rangle, t=12$

ANSWERS

1)

X	Y
-5	-4
-2	-1
1	0
4	-1
7	-4

2)

X	Y
0.5	8
1	4
2	2
4	1
8	0.5

3) $[5, \infty)$
4) \mathbb{R}
5) It moves to the right and down at a speed of $\sqrt{328} \approx 18.1$
6) It moves to the right and up at a speed of $\sqrt{3890} \approx 62.4$
