AP Precalc

4.9 Notes

Write your questions and thoughts here!

The position of a particle moving in a plane that is given by the parametric function, f(t) = (x(t), y(t)) may be expressed as a **vector-valued function**, $p(t) = \langle x(t), y(t) \rangle$. The **magnitude** of the position vector at time *t*, gives the distance of the particle from the origin.

Ex 1: Consider the vector-valued function, $f(t) = \langle t + 2, t^2 \rangle$.

t	X	у
-2		
-1		
0		
1		
2		

What shape is formed going left to right?

The **domain** of a vector-valued function is the intersection of the domains of both component functions.

Ex 2: Find the domains of each of the components of the vector-valued function, then find the domain of the vector-valued function.

$$f(t) = \langle t^2 - 3, \frac{t+3}{t-2} \rangle \qquad \qquad f(t) = \langle \sqrt{x+4} - 4, \frac{t}{t-5} \rangle$$

The vector-valued function $v(t) = \langle x(t), y(t) \rangle$ can be used to express the velocity of a particle moving in a plane at different times, *t*. At time *t*, the sign of the *x*(*t*) indicates if the particle is moving left or right, and the sign of the *y*(*t*), indicates if the particle is moving up or down. The magnitude of the velocity vector at time, *t*, gives the speed of the particle.

Write vour questions

Ex 3: Describe the motion and find the speed of a particle in motion with the following vector at the given time.

$$v(t) = \langle 2\cos t, 4\sin t \rangle, t = \frac{\pi}{3}$$

4.9 Vector-Valued Functions

AP Precalculus

4.9 Practice

© The Algebros from FlippedMath.com

3) $f(t) = \langle 4\cos t, 2\sin t \rangle$	5 -		
0	3 -		
π	2		
	-8 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8		
π			
π	.4		
2	-5 -		
Directions: Find the domains of each of the components	of the vector-valued function, then find the domain of		
the vector-valued function.			
4) $f(t) = \langle 3t - 4, \frac{3}{t} \rangle$	5) $f(t) = \left\langle \sqrt{x} - 3, \frac{t}{t-5} \right\rangle$		
-,			
$6) f(t) = \langle 2t^3, t \rangle$	7) $f(t) = \langle \sqrt{t-3}, \frac{2t}{2} \rangle$		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Directions: Describe the motion and find the speed of a particle in motion with the following vector at the			
given time. 8) $y(t) = (-4\cos t \ 8\sin t) \ t = \frac{\pi}{2}$	9) $y(t) = \frac{1}{2}(t-3)^2 \sqrt{2t-2} = -6$		
$(0) V(t) = \sqrt{-4} \cos t, 0 \sin t, t = -\frac{4}{4}$	$\int \frac{1}{2} v(t) - \frac{1}{2} (t - 3) , \forall 2t - 3 \}, t = 0$		

$$10) v(t) = \left< \frac{5t-4}{t}, 2t^3 \right>, t = -2$$

$$11) v(t) = \left< \frac{-t^2-5}{t}, -\sqrt{t-4} \right>, t = 5$$

4.9 Vector Valued Functions

4.9 Test Prep

- 12. (1.9) Given the graph of f. Which of the following describes the function
 - (A) $\lim_{x \to -4^{-}} f(x) = -\infty$ and $\lim_{x \to -4^{+}} f(x) = -\infty$ (B) $\lim_{x \to -4^{-}} f(x) = \infty$ and $\lim_{x \to -4^{+}} f(x) = -\infty$ (C) $\lim_{x \to -4^{-}} f(x) = -\infty$ and $\lim_{x \to -4^{+}} f(x) = \infty$
 - (D) $\lim_{x \to -4^-} f(x) = \infty$ and $\lim_{x \to -4^+} f(x) = \infty$
 - (E) $\lim_{x \to -4} f(x) = f(0)$

12. (1.10) The figure shows the graph of a function f. Which of the following could be an expression for the f(x)?

(A)
$$\frac{(x+2)(x-4)}{(x+2)}$$

(B) $\frac{(x-2)(x+4)}{(x-2)}$
(C) $\frac{(x+2)(x-4)}{(x-4)}$
(D) $\frac{(x-2)(x+4)}{(x+4)}$

(x+4)

