Write your questions and thoughts here!

The position of a particle moving in a plane that is given by the parametric function, $f(t)=$ $(x(t), y(t))$ may be expressed as a vector-valued function, $p(t)=\langle x(t), y(t)\rangle$. The magnitude of the position vector at time t, gives the distance of the particle from the origin.

Ex 1: Consider the vector-valued function, $f(t)=\left\langle t+2, t^{2}\right\rangle$.

t	x	y
-2		
-1		
0		
1		
2		

What shape is formed going left to right?

The domain of a vector-valued function is the intersection of the domains of both component functions.

Ex 2: Find the domains of each of the components of the vector-valued function, then find the domain of the vector-valued function.
$f(t)=\left\langle t^{2}-3, \frac{t+3}{t-2}\right\rangle$

$$
f(t)=\left\langle\sqrt{x+4}-4, \frac{t}{t-5}\right\rangle
$$

The vector-valued function $v(t)=\langle x(t), y(t)\rangle$ can be used to express the velocity of a particle moving in a plane at different times, t. At time t, the sign of the $x(t)$ indicates if the particle is moving left or right, and the sign of the $y(t)$, indicates if the particle is moving up or down. The magnitude of the velocity vector at time, t , gives the speed of the particle.

Ex 3: Describe the motion and find the speed of a particle in motion with the following vector at the given time.

$$
v(t)=\langle 2 \cos t, 4 \sin t\rangle, t=\frac{\pi}{3}
$$

4.9 Vector-Valued Functions

AP Precalculus

4.9 Practice

Directions: For the given vector-valued functions, complete the table and sketch the graph that the endpoints make.

1) $f(t)=\left\langle t^{2}, t-2\right\rangle$.

t	x	y
-2		
-1		
0		
1		
2		

2) $f(t)=\left\langle t+4, \frac{4}{t}\right\rangle$

t	x	y
-12		
-8		
-4		
0		
4		

3) $f(t)=\langle 4 \cos t, 2 \sin t\rangle$

t	x	y
0		
$\frac{\pi}{6}$		
$\frac{\pi}{4}$		
$\frac{\pi}{3}$		
$\frac{\pi}{2}$		

Directions: Find the domains of each of the components of the vector-valued function, then find the domain of the vector-valued function.

| 4) $f(t)=\left\langle 3 t-4, \frac{3}{t}\right\rangle$ | 5) $f(t)=\left\langle\sqrt{x}-3, \frac{t}{t-5}\right)$ |
| :--- | :--- | | |
| :--- |
| 6) $f(t)=\left\langle 2 t^{3},\right\| t\| \rangle$ |
| |

10) $v(t)=\left\langle\frac{5 t-4}{t}, 2 t^{3}\right\rangle, t=-2$	11) $v(t)=\left\langle\frac{-t^{2}-5}{t},-\sqrt{t-4}\right\rangle, t=5$

4.9 Vector Valued Functions

4.9 Test Prep

12. (1.9) Given the graph of f. Which of the following describes the function
(A) $\lim _{x \rightarrow-4^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-4^{+}} f(x)=-\infty$
(B) $\lim _{x \rightarrow-4^{-}} f(x)=\infty$ and $\lim _{x \rightarrow-4^{+}} f(x)=-\infty$
(C) $\lim _{x \rightarrow-4^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-4^{+}} f(x)=\infty$
(D) $\lim _{x \rightarrow-4^{-}} f(x)=\infty$ and $\lim _{x \rightarrow-4^{+}} f(x)=\infty$
(E) $\lim _{x \rightarrow-4} f(x)=f(0)$

13. (1.10) The figure shows the graph of a function f. Which of the following could be an expression for the $f(x)$?
(A) $\frac{(x+2)(x-4)}{(x+2)}$
(B) $\frac{(x-2)(x+4)}{(x-2)}$
(C) $\frac{(x+2)(x-4)}{(x-4)}$
(D) $\frac{(x-2)(x+4)}{(x+4)}$

graph of \boldsymbol{f}
