1.11B Polynomial Long Division and Slant Asymptotes

AP Precalculus

CA #2

Divide the following using long division or synthetic division.

1.
$$\frac{6x^3 - 2x^2 + 10x - 3}{2x^2 - x + 2}$$

2.
$$\frac{4x^3-10x^2+x+8}{2x-3}$$

Name:

Use the graph of f to write the equation of the slant asymptote.

3.

Determine if the following functions have a horizontal asymptote, slant asymptote, or neither.

4.
$$f(x) = \frac{x^2 + 3x - 2}{2x^4 + 5x^3 - 3x1}$$

Circle one:

The graph of *f* has a horizontal asymptote.

The graph of *f* has a slant asymptote.

The graph of f does not have a horziontal or slant asymptote.

5.
$$f(x) = \frac{2x^4 + 3x^2 + x}{3x^4 - x^2 + 4}$$

Circle one:

The graph of f has a horizontal asymptote.

The graph of *f* has a slant asymptote.

The graph of f does not have a horziontal or slant asymptote.

6.
$$f(x) = \frac{x^5 + 2x^3 + 8x + 2}{2x^4 + 3x^2 - 5}$$

Circle one:

The graph of f has a horizontal asymptote.

The graph of *f* has a slant asymptote.

The graph of *f* does not have a horziontal or slant asymptote.

Write the equation for the slant asymptote for the following functions.

7.
$$f(x) = \frac{4x^3 - 5x + 3}{2x^2 + 3x}$$

8.
$$f(x) = \frac{3x^2 - x + 5}{x - 2}$$

Answers to 1.11B CA #2	
1. $3x + \frac{1}{2} + \frac{\frac{9}{2}x - 4}{2x^2 - x + 2}$	$2. 2x^2 - 2x - 2 - \frac{1}{2x - 3}$
3. $y = -\frac{2}{5}x - 1$	4. The graph of f has a horizontal asymptote.
5. The graph of f has a horizontal asymptote.	6. The graph of f has a slant asymptote.
7. $y = 2x - 3$	8. y = 3x + 5