Slant Asymptotes

Degree of the numerator is one higher than degree of denominator!
Example \#1

$$
f(x)=\frac{x^{3}-x^{2}-4 x+4}{x^{2}-2 x-3}
$$

Example \#2

$$
f(x)=\frac{x^{2}-x+2}{x-3}
$$

Long Division
Synthetic Division

Write your questions and thoughts here!

Write the equation of the slant asymptote.

Example 3:

$$
f(x)=\frac{4 x^{2}+2 x-7}{2 x+3}
$$

Example 4:

$$
g(x)=\frac{6 x^{3}+13 x^{2}-5}{2 x^{2}+3 x}
$$

End Behavior

$$
g(x)=\frac{6 x^{3}+13 x^{2}-5}{2 x^{2}+3 x}
$$

1.11B Polynomial Long Division and Slant Asymptotes

Divide the following using long division or synthetic division.

1. $\frac{3 x^{3}-4 x^{2}-3}{x^{2}+5 x+1}$
2. $\frac{x^{3}-4 x^{2}+6 x-4}{x-2}$

Use the graph of f to write the equation of the slant asymptote.

3.

4.

Determine if the following functions have a horizontal asymptote, slant asymptote, or neither.
5. $f(x)=\frac{4 x^{5}-3 x^{3}+4 x+1}{5 x^{3}-2 x^{2}+1}$

Circle one:
The graph of f has a horizontal asymptote.

The graph of f has a slant asymptote.

The graph of f does not have a horziontal or slant asymptote.
6. $f(x)=\frac{2 x^{4}+x^{2}+1}{3 x^{4}-2 x^{2}+5 x}$

Circle one:
The graph of f has a horizontal asymptote.

The graph of f has a slant asymptote.

The graph of f does not have a horziontal or slant asymptote.
7. $f(x)=\frac{x^{3}+5 x^{2}+x+2}{3 x^{4}-2 x^{3}+2 x^{2}-3}$

Circle one:
The graph of f has a horizontal asymptote.

The graph of f has a slant asymptote.

The graph of f does not have a horziontal or slant asymptote.

Write the equation for the slant asymptote for the following functions.

8. $f(x)=\frac{x^{3}-2 x^{2}-4 x+1}{x^{2}-2 x+1}$
9. $f(x)=\frac{x^{2}-9 x+4}{x+6}$
10. $f(x)=\frac{4 x^{2}+12 x-6}{2 x+1}$
11. $f(x)=\frac{9 x^{4}-5 x^{2}+3 x-6}{3 x^{3}-4 x^{2}}$

Use the rational function to answer the following.

12.

$$
f(x)=\frac{3 x^{3}-12 x}{x^{2}-2 x-8}
$$

d. Vertical Asymptote(s):
g. y-intercept:
a. Domain:
e. Horizontal Asymptote:
h. x-intercept(s):
b. Zero(s):
f. Slant Asymptote:
i. End Behavior:
c. Hole(s):

Multiple Choice

13. The function f is a rational function. The quotient and remainder form of f is given by $f(x)=-2 x+1+\frac{3 x+4}{x^{2}-4 x-12}$. Which describes the end behavior of f ?
(A) $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$
(B) $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$
(C) $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$
(D) $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$
14. Which of the following is equivalent to $\frac{x^{2}+5 x+2}{x+5}$?
(A) $x+1$
(B) $x+2$
(C) $x+\frac{2}{x+5}$
(D) $x+1-\frac{4}{x+5}$
15. The function f is given by $f(x)=\frac{6 x^{2}+a x+2}{x+3}$ and has a slant asymptote of $y=6 x+3$. What is the value of a ?
(A) -4
(B) 12
(C) 15
(D) 21
