AP Precalc

1.11B Polynomial Long Division & Slant Asymptotes

1.11B Notes

Write your questions and thoughts here!

Slant Asymptotes

Degree of the numerator is one higher than degree of denominator!

Example #1

$$f(x) = \frac{x^3 - x^2 - 4x + 4}{x^2 - 2x - 3}$$

Example #2

$$f(x) = \frac{x^2 - x + 2}{x - 3}$$

Long Division

Synthetic Division

Write your questions and thoughts here!

Write the equation of the slant asymptote.

Example 3:

$$f(x) = \frac{4x^2 + 2x - 7}{2x + 3}$$

Example 4:

$$g(x) = \frac{6x^3 + 13x^2 - 5}{2x^2 + 3x}$$

End Behavior

$$g(x) = \frac{6x^3 + 13x^2 - 5}{2x^2 + 3x}$$

1.11B Polynomial Long Division and Slant Asymptotes

AP Precalculus

1.11B Practice

Divide the following using long division or synthetic division.

1.
$$\frac{3x^3 - 4x^2 - 3}{x^2 + 5x + 1}$$

$$2. \ \frac{x^3 - 4x^2 + 6x - 4}{x - 2}$$

Use the graph of f to write the equation of the slant asymptote.

3.

4.

Determine if the following functions have a horizontal asymptote, slant asymptote, or neither.

5.
$$f(x) = \frac{4x^5 - 3x^3 + 4x + 1}{5x^3 - 2x^2 + 1}$$

Circle one:

The graph of *f* has a horizontal asymptote.

The graph of f has a slant asymptote.

The graph of f does not have a horziontal or slant asymptote.

6.
$$f(x) = \frac{2x^4 + x^2 + 1}{3x^4 - 2x^2 + 5x}$$

Circle one:

The graph of f has a horizontal asymptote.

The graph of f has a slant asymptote.

The graph of *f* does not have a horziontal or slant asymptote.

7.
$$f(x) = \frac{x^3 + 5x^2 + x + 2}{3x^4 - 2x^3 + 2x^2 - 3}$$

Circle one:

The graph of *f* has a horizontal asymptote.

The graph of f has a slant asymptote.

The graph of f does not have a horziontal or slant asymptote.

Write the equation for the slant asymptote for the following functions.

8.
$$f(x) = \frac{x^3 - 2x^2 - 4x + 1}{x^2 - 2x + 1}$$

9.
$$f(x) = \frac{x^2 - 9x + 4}{x + 6}$$

10.
$$f(x) = \frac{4x^2 + 12x - 6}{2x + 1}$$

11.
$$f(x) = \frac{9x^4 - 5x^2 + 3x - 6}{3x^3 - 4x^2}$$

Use the rational function to answer the following.

12.

$$f(x) = \frac{3x^3 - 12x}{x^2 - 2x - 8}$$

d. Vertical Asymptote(s):

g. y-intercept:

a. Domain:

e. Horizontal Asymptote:

h. *x*-intercept(s):

b. Zero(s):

f. Slant Asymptote:

i. End Behavior:

c. Hole(s):

1.11B Polynomial Long Division and Slant Asymptotes

Multiple Choice

13. The function f is a rational function. The quotient and remainder form of f is given by $f(x) = -2x + 1 + \frac{3x+4}{x^2-4x-12}$. Which describes the end behavior of f?

(A)
$$\lim_{x \to -\infty} f(x) = -\infty$$
 and $\lim_{x \to \infty} f(x) = -\infty$

(B)
$$\lim_{x \to -\infty} f(x) = \infty$$
 and $\lim_{x \to \infty} f(x) = \infty$

(C)
$$\lim_{x \to -\infty} f(x) = -\infty$$
 and $\lim_{x \to \infty} f(x) = \infty$

(D)
$$\lim_{x \to -\infty} f(x) = \infty$$
 and $\lim_{x \to \infty} f(x) = -\infty$

14. Which of the following is equivalent to $\frac{x^2+5x+2}{x+5}$?

(A)
$$x + 1$$

(B)
$$x + 2$$

(C)
$$x + \frac{2}{x+5}$$

(D)
$$x + 1 - \frac{4}{x+5}$$

15. The function f is given by $f(x) = \frac{6x^2 + ax + 2}{x + 3}$ and has a slant asymptote of y = 6x + 3. What is the value of a?

$$(A) -4$$

$$(C)$$
 15