1.12A Translations of Functions

GRAPHICAL TRANSFORMATION. Use the graph of \boldsymbol{f} to graph $\boldsymbol{g}(\boldsymbol{x})$.

1. $g(x)=f(x-2)+4$

2. $g(x)=f(x-5)-3$

3. $g(x)=-f(x+3)$

4. $g(x)=-f(x)+5$

5. $g(x)=-f(x-3)+1$

ALGEBRAIC TRANSFORMATION. Express the $\boldsymbol{g}(\boldsymbol{x})$ in terms of \boldsymbol{x}.

7. $f(x)=4 x+3$
$g(x)=f(x)+5$, find $g(x)$.
$g(x)=[4 x+3]+5$
$g(x)=4 x+8$
8. $f(x)=x^{3}+2 x^{2}$
$g(x)=-f(x)+5$, find $g(x)$.
$g(x)=-\left[x^{3}+2 x^{2}\right]+5$
$g(x)=-x^{3}-2 x^{2}+5$
9. $f(x)=2 x-5$
$g(x)=f(x+3)+4$, find $g(x)$.
$g(x)=2(x+3)-5+4$
$g(x)=2 x+6-1$
$g(x)=2 x+5$
10. $f(x)=2 x^{2}-3 x+1$
$g(x)=f(x-2)+5$, find $g(x)$.
$g(x)=\left[2(x-2)^{2}-3(x-2)+1\right]+5$
$g(x)=2(x-2)(x-2)-3 x+6+1+5$
$g(x)=2\left(x^{2}-4 x+4\right)-3 x+12$
$g(x)=2 x^{2}-8 x+8-3 x+12$
$g(x)=2 x^{2}-11 x+20$
© The Algebros from FlippedMath.com

NUMERIC TRANSFORMATION. Use the table of values to answer the following.

11. Given the table of values for f.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-6	2
-3	8
2	15
5	-2
8	-13

Let $g(x)=f(x)+2$, find $g(5)$.
$g(5)=f(5)+2$
$g(5)=-2+2$
$g(5)=0$
12. Given the table of values for f.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	0
1	2
2	4
3	8
4	16

Let $g(x)=f(x+2)-3$, find $g(1)$.

$$
\begin{aligned}
& g(1)=f(1+2)-3 \\
& g(1)=f(3)-3 \\
& g(1)=8-3 \\
& g(1)=5
\end{aligned}
$$

13. Given the table of values for f.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-4	-32
-2	6
0	-8
2	21
4	14

Let $g(x)=-f(x-2)$, find $g(4)$.
$g(y)=-f(y-2)$
$g(4)=-f(2)$
$g(4)=-21$

DOMAIN AND RANGE TRANSFORMATION. Find the domain and range of the transformed function.

14.

Given the graph for f has a domain of $(-5,3]$ and range of $[-4,8]$.

$$
\text { Let } g(x)=f(x+5)
$$

Find the domain and range of $g(x)$.

Domain shifts left 5

 $(-10,-2)$Range has no change $[-4,8]$
15.

Given the graph for f has a domain of $(0,5)$ and range of $[-10,4]$.
Let $g(x)=f(x-2)+4$.
Find the domain and range of $g(x)$.

Domain shifts right 2 $(2,7)$

Range shifts up 4
$[-6,8]$
16.

Given the graph for f has a domain of $[-2,4]$ and range of $(-1,8)$.
Let $g(x)=-f(x+3)+5$.
Find the domain and range of $g(x)$.

Domain shifts left 3 $[-5,1]$

Range flips vertically, shifts up 5
$(-1,8) \rightarrow(1,-8) \rightarrow(6,-3)=(-3,6)$

Use the graph \boldsymbol{f} to answer the following.

17.

Let the $g(x)=-f(x+3)+2$
a. Graph the $g(x)$.
b. State the domain of $g(x)$. $[-8,0]$
c. State the range of $g(x) .[-\partial, 1]$
d. Find $g(-2) .=1$
e. Find the zeroes of $g(x) . \quad x=-8,-4,0$
f. Find the y-intercept of $g(x)$.

1.12A Translations of Functions

Multiple Choice

18. The graph of $y=f(x)$ is shown for $-3 \leq x \leq 4$.

Which of the following is the transformed graph for $y=f(x+2)-1$?
(B)

(C)

(D)

(A)

19. The functions f and g are defined for all real numbers such that $g(x)=-f(x)+5$. Which of the following sequences of transformations maps the graph of f to the graph of g in the same $x y$-plane?
(A) A horizontal translation of the graph of f by 5 units, followed by a vertical reflection of the graph of f.
(B) A vertical translation of the graph of f by 5 units, followed by a vertical reflection of the graph of f.
(C) A vertical reflection of the graph of f, followed by a horizontal translation of the graph of f by 5 units.
(D) A vertical reflection of the graph of f, followed by a vertical translation of the graph of f by 5 units.
20. The function f is given by $f(x)=-x^{2}+3 x+2$. The graph of which of the following functions is the image of the graph of f after a vertical translation of the graph of f by 4 units ? $\quad f(x)+4$
(A) $m(x)=-(x+4)^{2}+3(x+4)+2$, because this is an additive transformation of f that results from adding to each input value of x.
(B) $n(x)=-(x-4)^{2}+3(x-4)+2$, because this is an additive transformation of f that results from adding to each input value of x.
(C) $p(x)=-x^{2}+3 x+6$, because this is an additive transformation of f that results from adding to the $f(x)$.
(D) $q(x)=-x^{2}+3 x-2$, because this is an additive transformation of f that results from adding to the $f(x)$.

