Write your questions and thoughts here!

Average Rate of Change

1. Find the average rate of change between (1, 2) and (3, 4).

Instead of a graph, let's say we have a table of values, and you want to calculate the average rate of change on an interval. Be careful that the **output values are always in the numerator**.

2. What is the average rate of change on the interval from 13 to 25 seconds?

t time (seconds)	10	13	19	25
d(t) distance (meters)	80	76	43	30

The word *per* is a key indicator that you are dealing with a rate of change. Miles *per* gallon. Students *per* classroom. Online gamers **per** server. It also tells you which variable is dependent or independent, as the dependent is always listed first.

Rate of Change at a Point

What about the rate of change of a function at a point? This tells us about the rate at which the output values would change were the input values to change at that point. We can approximate the rate of change at a point by using the average rates of change over small intervals that contain the point.

3. Estimate the rate of change at x = 1 for the function $f(x) = -\frac{1}{2}x^2 + 3x - \frac{1}{2}$.

Write your questions
and thoughts here!

4. Try it on your own! Find an approximation for the rate of change of g at x = -2 if $g(x) = e^x$.

Positive and Negative Rates of Change

A **positive** rate of change indicates that as one quantity increases or decreases, the other quantity _____.

A **negative** rate of change indicates that as one quantity increases, the other

State whether the situation represents a positive or negative rate of change.

- 5. As the years increase, a high school student body increases.
- 6. As Mr. Bean's weight decreases, his running distances increase.

1.2 Rates of Change

AP Precalculus

1.2 Practice

Find the average rat	e of change of the	function on th	e given interval.

- 1. $h(t) = 3t t^2$ over the interval $2 \le t \le 5$.
- 2. $b(w) = w + 2^w$ over the interval [-1, 2].
- 3. $f(x) = \ln 3x$ over the interval $1 \le x \le 4$.

Use the information in each table to find the average rate of change on the given interval.

t Minutes	3	10	21	43	55
d(t) meters	5	102	135	140	143

a. $3 \le t \le 55$

	5	102	135	140	143	
b	$0. 10 \le t \le$	≤ 43		c. 21	$\leq t \leq 55$	

5.

t months	6	12	24	48	72
d(t) hair follicles	20,000	19,800	15,000	10,000	7,500

a. $6 \le t \le 48$

d(t) hair follicles	4	20,000	19,800	15,000	10,000		7,500
	b.	$12 \le t \le$	≤ 72			c. 6 s	$\leq t \leq 72$

Estimate the rate of change of each function at the given point.

6. $f(x) = \frac{1}{3x}$ at x = 47. $f(x) = 2x^2 + 1$ at x = -2

6.
$$f(x) = \frac{1}{3x}$$
 at $x = 4$

7.
$$f(x) = 2x^2 + 1$$
 at $x = -2$

8. $f(x) = 7\sqrt{x}$ at x = 2

9. $f(x) = \ln(2x)$ at x = 3

State whether the situation represents a positive or negative rate of change.

- 10. A candy company uses pints of chocolate to make candy. The more chocolate they use, the more boxes of candy are produced.
- 11. The amount of money is Josh's savings account decreases for each semester he attends college.

- 12. As the number of cats Mr. Sullivan owns increases, the number of mice in his barn decreases.
- 13. As the amount of water Mr. Brust drinks decreases, the fewer trips to the restroom he needs to make.

1.2 Rates of Change

1.2 Test Prep

14. A continuous function f is defined on the closed interval -5 < x < 6 and is shown in the graph below. For how many values of b, -5 < b < 6, is the average rate of change of f on the interval [b, 5] equal to 0? Give a reason for your answer.

