1.7A Rational Functions and End Behavior

AP Precalculus

1.7A Practice

State the domain of the following rational functions. Use interval notation.

1.
$$f(x) = \frac{x+1}{2x+5}$$

$$\Im \times + 5 \neq 0$$

$$\chi \neq -\frac{5}{3}$$
2.
$$g(n) = \frac{n^{2}-4}{(n+3)(n-7)}$$

$$(n+3)(n-7) \neq 0$$

$$\chi \neq -5$$

$$(n+3)(n-7) \neq 0$$

$$\chi \neq -3$$

$$n \neq 7$$
3.
$$h(x) = \frac{x^{3}+7x^{2}+12x}{x^{2}+2x-15}$$

$$(x+5)(x-3) \neq 0$$

$$\chi \neq -5$$

$$\chi \neq -5$$

$$\chi \neq -5$$

$$(x+5)(x-3) \neq 0$$

$$\chi \neq -5$$

$$\chi \neq -5$$

$$(x+5)(x-3) \neq 0$$

$$\chi \neq -5$$

$$\chi \neq -5$$

$$(x+5)(x-3) \neq 0$$

$$(x-5) \neq 4$$

CONTINUED ON NEXT PAGE

© The Algebros from FlippedMath.com

CALCULATOR ACTIVE Complete the table to answer the following.

9.
$$f(x) = \frac{x^2}{x^2 - 4x}$$

x	-10,000	-1,000	-100	100	1,000	10,000
f(x)	0.9996	0.99602	0.96154	1.0417	1.004	1.0004

End Behavior:

Is there a horizontal asymptote? If so, write the equation of the horizontal asymptote.

y=1

 $\lim_{X \to \infty} f(x) = 1 \qquad \lim_{X \to \infty} f(x) = 1$

10.
$$d(t) = \frac{t^3 - 3t}{2t + 1}$$

t	-5,000	-500	-50	50	500	5,000
d (t)	1.25×10^{7}	125,123	1261.1	1236.1	124,874	1.24×10^{7}

End Behavior:

Is there a horizontal asymptote?

If so, write the equation of the horizontal asymptote.

```
\lim_{t \to \infty} d(t) = \infty \qquad \lim_{t \to \infty} d(t) = \infty
```

 $= \mathcal{O}$

```
No horizontal asymptote
```

Use the table of the rational function h to find the following.					
11.					
	t	h(t)	a Find $h(999) = -477$ d. Find the v-intercept. (0 32)		
	-999,999	4.2×10^{32}			
	-99,999	7.3×10^{12}			
	-9,999	6,524,378	b. Find $\lim h(t) = - \circ^{-1}$ e. Find $\lim h(t) = \circ^{-1}$		
	-999	561,391	$t \rightarrow \infty$ $t \rightarrow -\infty$		
	0	32			
	999	-478	c As t increases without bound f. As t decreases without bound		
	9,999	-289,437	the $h(t)$ the $h(t)$		
	99,999	-2,198,235			
	999,999	-389,031,455	approaches negative infinity approaches infinity		
			approaches negative infinity approaches infinity		

Use the graph of the rational function *f* to answer the following if they exist!

- g. Find $\lim_{x \to \infty} f(x) = \bigcirc$
- h. As x increases without bound the f(x)...

approaches zero

i. Estimate the point of inflection.

 $(-\frac{1}{2},-1)$

j. Find the average rate of change over the interval $-1 \le x \le 0$.

f(-1)=0 $\frac{-a-0}{0--1}=\frac{-a}{1}=\frac{-a}{-a}$ f(0)=-a $0--1=\frac{-a}{1}=\frac{-a}{-a}$

- a. State the domain of f(x). Use interval notation. $(-\infty, -\lambda) \cup (-\lambda, \lambda) \cup (2, \infty)$
- b. Find f(9) =
- c. Find the y-intercept. (0, -2)
- d. Find the x-intercept(s). (-1, 0)
- e. State the interval(s) where f(x) is increasing.

Never

f. State the interval(s) where f(x) is decreasing.

 $(-\infty, -3)^{\nu}(-3, 3)^{\nu}(3, \infty)$

- k. Find $\lim_{x \to -\infty} f(x) = \bigcirc$
- 1. As x decreases without bound the f(x)...

approaches zero

m. Find the horizontal asymptote.

y=0

n. State the interval(s) where f(x) < 0.

 $(x+a)(x-a) \neq 0$

x + 2x - 2x -4 70

x3-4 ±0

(A) $x^{2} + 4x + 4$ (B) $x^{2} - 4x + 4$ (C) $x^{2} - 4$ (D) $(x - 4)^{2}$ (E) $(x + 4)^{2}$

1.7A Rational Functions and End Behavior

1.7A Test Prep

Multiple Choice

- 14. Given $f(x) = x^2 + a^2$ and $g(x) = x^2 a^2$ where *a* is a constant integer. The function $r(x) = \frac{f(x)}{g(x)}$. What is the domain of r(x)? (A) $(-\infty, -a) \cup (a, \infty)$ (B) (-a, a)(C) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (D) $(-\infty, -a)$ (A) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (B) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (C) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (C) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (C) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (C) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (C) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (C) $(-\infty, -a) \cup (-a, a) \cup (a, \infty)$ (C) $(-\infty, -a) \cup (-a, a) \cup (-a, \infty)$ (C) $(-\infty, -a) \cup (-a, -a) \cup (-a, -a) \cup (-a, -a)$ (C) $(-\infty, -a) \cup (-a, -a) \cup (-a, -a) \cup (-a, -a) \cup (-a, -a)$ (C) $(-\infty, -a) \cup (-a, -a) \cup (-a,$
 - (E) (*a*,∞)
- 15. The function f(x) is defined such that for all x > 0, the line y = 4 is a horizontal asymptote. Which of the following must be true?

16. Given the line y = a is a horizontal asymptote of g(x) for all x < 0, which of the following must be true?

- (A) g(a) is undefined Maybe (B) $g(x) \neq a$ Maybe (C) $\lim_{x \to -\infty} g(x) = a$ V25! (D) $\lim_{x \to -\infty} g(x) = -a$ No Pe (E) None of the above No Pe
- 17. Given the graph of f. Which describes the end behavior of f?

