Zeros

Example 1:

$$
f(x)=\frac{x^{2}+2 x-8}{2 x^{2}+4}
$$

Domain:

Zero(s):

Holes

Example 2:

$$
g(x)=\frac{x^{2}-x-12}{x-4}
$$

Domain:

Hole(s):

Zero(s):

Zeros

Let f be the rational function $f(x)=\frac{N(x)}{D(x)}$ where N and D have no common factors. The zeros of the rational function occur when $N(x)=0$ for all x in the domain of f.

Vertical Asymptotes

Example 3:

$$
f(x)=\frac{4 x+8}{x^{2}+3 x-10}
$$

Domain:

Hole(s):

Zero(s):

Vertical Asymptote(s):

Example 4:

$$
h(x)=\frac{x^{2}-9}{x^{2}-2 x-3}
$$

Domain:
Hole(s):

Zero(s):

Vertical Asymptote(s):

Horizontal Asymptote:
y-intercept:

Example 5:

Domain:

Hole(s):

Zero(s):

Vertical Asymptote(s):

Horizontal Asymptote:
y-intercept (estimate):

Sign Table for Example \#5

\boldsymbol{x}	$-\infty<x<-4$	-4	$-4<x<-2$	-2	$-2<x<2$	2	$2<x<7$	7	$7<x<\infty$
$\boldsymbol{f}(\boldsymbol{x})$									

1.8 Rational Functions and Zeros

Find the zeros of the following rational function if one exists.

1. $f(x)=\frac{x-1}{x^{2}-9}$
2. $d(t)=\frac{(t+3)(t-1)}{4 t+12}$
3. $h(x)=\frac{x^{2}-3 x-10}{x^{2}+6 x}$
4. $r(x)=\frac{x-1}{x}$
5.

\boldsymbol{x}	$-\infty<x<-3$	-3	$-3<x<5$	5	$5<x<\infty$
$\boldsymbol{f}(\boldsymbol{x})$	Positive	DNE	Negative	0	Positive

6. $c(n)=\frac{n^{2}+5 n}{n^{2}-25}$
7.

\boldsymbol{x}	$-\infty<x<1$	1	$1<x<6$	6	$6<x<\infty$
$\boldsymbol{g}(\boldsymbol{x})$	Negative	0	Negative	0	Positive

Use the rational function to answer the following.

8.

$$
f(x)=\frac{x^{2}-2 x-24}{x-6}
$$

a. Domain:
b. Hole(s):
c. Zero(s):
d. Vertical Asymptote(s):
e. Horizontal Asymptote:
f. y-intercept:
9.

$$
g(x)=\frac{4(x+5)(x-2)}{x^{2}-4}
$$

a. Domain:
b. Hole(s):
c. Zero(s):
d. Vertical Asymptote(s):
e. Horizontal Asymptote:
f. y-intercept:

Use the rational function to answer the following.

10.

$$
f(x)=\frac{x+2}{3 x^{2}+6 x}
$$

a. Domain:
b. Hole(s):
c. x-intercept(s):
d. Vertical Asymptote(s):
e. Horizontal Asymptote:
f. y-intercept:
11.

$$
h(t)=\frac{t^{3}-2 t^{2}}{t^{2}+3 t-18}
$$

a. Domain:
b. Hole(s):
c. $\operatorname{Root}(\mathrm{s})$:
d. Vertical Asymptote(s):
e. Horizontal Asymptote:
f. y-intercept:

Use the graph to create a sign table.
12.

\boldsymbol{x}	$-\infty<x<-5$	-5	$-5<x<-2$	-2	$-2<x<5$	5	$5<x<\infty$
$\boldsymbol{f}(\boldsymbol{x})$							

13.

(C) The Algebros from FlippedMath.com

Multiple Choice

14. The function f is given by $f(x)=\frac{x^{2}+2 x-24}{4-x}$. Which of the following describes the function f ?
(A) The graph of f has an x-intercept at $x=-6$ and a vertical asymptote of $x=4$.
(B) The graph of f has an x-intercept at $x=-6$ and a hole at $x=4$.
(C) The graph of f has an x-intercept at $x=-6$ and a vertical asymptote of $x=-4$.
(D) The graph of f has an x-intercept at $x=-6$ and a hole at $x=-4$.
(E) The graph of f has x-intercepts at $x=-6$ and $x=4$.

For questions 15 and 16 use the following table.

\boldsymbol{x}	$-\infty<x<-3$	-3	$-3<x<0$	0	$0<x<2$	2	$2<x<\infty$
$\boldsymbol{f}(\boldsymbol{x})$	positive	0	negative	undefined	negative	0	positive

15. Which of the following must be true for the function f ?
(A) The graph of f has a maximum at $x=-3$ and a minimum at $x=2$.
(B) The graph of f has a minimum at $x=-3$ and a maximum at $x=2$.
(C) f has exactly two distinct real zeros.
(D) f has exactly three distinct real zeros.
(E) The graph of f has a vertical asymptote at $x=0$.
16. Which of the following could be an expression for $f(x)$?
(A) $\frac{x(x+3)(x-2)}{x}$
(B) $\frac{x(x-3)(x+2)}{x}$
(C) $\frac{x}{x(x+3)(x-2)}$
(D) $\frac{x}{x(x-3)(x+2)}$
(E) None of the above
