1.8 Rational Functions and Zeros

Find the zeros of the following rational function if one exists.

1. $f(x)={\frac{x-1}{x^{2}-9}}^{=0}$
$(x+3)(x-3)$
$x=1$
2. $d(t)=\frac{(\pm \div 5)(t-1)}{4 t+12}=0$
$4(x+3)$
$t=1$

$$
(x-5)(x * 2)=0
$$

$$
\text { 3. } \left.h(x)=\frac{x^{2}-3 x-10}{x^{2}+6 x}\right)
$$

$x=5$ and -2
4. $r(x)=\frac{x-1}{x}=0$
5.

\boldsymbol{x}	$-\infty<x<-3$	-3	$-3<x<5$	5	$5<x<\infty$
$\boldsymbol{f}(\boldsymbol{x})$	Positive	DNE	Negative	0	Positive

$$
x=5
$$

7.
8. $c(n)=\frac{n^{2}+5 n}{n^{2}-25}$
$(n+5)(n-5)$

$$
n=0
$$

\boldsymbol{x}	$-\infty<x<1$	1	$1<x<6$	6	$6<x<\infty$
$\boldsymbol{g}(\boldsymbol{x})$	Negative	0	Negative	0	Positive
$x=1$ and 6					

Use the rational function to answer the following.

$4 x^{2}+12 x-40$
$4\left(x^{2}+3 x-10\right)$
$g(x)=\frac{4(x+5)(x-2)}{x^{2}-4}=0$
$(x+2)(x-2) \neq 0$
a. Domain:

$$
(-\infty,-2) \cup(-2,2) \cup(2, \infty)
$$

b. Hole(s):

$$
x=2
$$

c. $Z \operatorname{ero}(\mathrm{~s}):$

$$
x=-5
$$

d. Vertical Asymptote(s):

$$
x=-2
$$

e. Horizontal Asymptote:

$$
y=\frac{4}{1}=4
$$

f. y-intercept:

$$
g(0)=\frac{-40}{-4}=10
$$

10.

$$
f(x)=\frac{x+z}{3 x^{2}+6 x}=0
$$

g. Domain:

$$
3 x(x+2) \neq 0
$$

$$
(-\infty,-2) \cup(-2,0) \cup(0, \infty)
$$

h. Holes):

$$
x=-2
$$

i. Zeros):
none
j. Vertical Asymptotes):

$$
x=0
$$

k. Horizontal Asymptote:

$$
y=0
$$

1. y-intercept:

$$
f(0)=\frac{2}{0}=\text { does not exist }
$$

11. $t^{2}(t-2)=0$

$$
h(t)=\frac{t^{3}-2 t^{2}}{t^{2}+3 t-18}
$$

$$
(t+6)(t-3) \neq 0
$$

$$
(-\infty,-6) \cup(-6,3) \cup(3, \infty)
$$

b. Holes):

none

c. Zeros):

$$
x=0 \text { and } 2
$$

d. Vertical Asymptote (s):

$$
x=-6 \text { and } 3
$$

e. Horizontal Asymptote:
none
f. y-intercept:

$$
h(0)=\frac{0}{-18}=0
$$

Use the graph to create a sign table.

12.

\boldsymbol{x}	$-\infty<x<-5$	-5	$-5<x<-2$	-2	$-2<x<5$	5	$5<x<\infty$		
$\boldsymbol{f}(\boldsymbol{x})$	negative	0	positive	ONE	negative	0	positive		Doer Not Exist
:---:									
(undefined)									

13.

1

Multiple Choice

$$
\begin{array}{r}
\text { zero } \\
(x+6)(x-4)=0
\end{array}
$$

14. The function f is given by $f(x)=\frac{x^{2}+2 x-24}{4-x}$. Which of the following describes the function f ?

$$
-(x-4)
$$

(A) The graph of f has an x-intercept at $x=-6$ and a vertical asymptote of $x=4$.
(B) The graph of f has an x-intercept at $x=-6$ and a hole at $x=4$.
(C) The graph of f has an x-intercept at $x=-6$ and a vertical asymptote of $x=-4$.
(D) The graph of f has an x-intercept at $x=-6$ and a hole at $x=-4$.
(E) The graph of f has x-intercepts at $x=-6$ and $x=4$.

For questions 15 and 16 use the following table.

15. Which of the following must be true for the function f ?
(A) The graph of f has a maximum at $x=-3$ and a minimum at $x=2$.
(B) The graph of f has a minimum at $x=-3$ and a maximum at $x=2$.
(C) f has exactly two distinct real zeros. $x=-3$ and $x=2$
(D) f has exactly three distinct real zeros.
(E) The graph of f has a vertical asymptote at $x=0$.
16. Which of the following could be an expression for $f(x)$?
(A) $\frac{x(x+3)(x-2)}{x}=0$
(B) $\frac{x(x-3)(x+2)}{x}$
(C) $\frac{x}{x(x+3)(x-2)}$
(D) $\frac{x}{x(x-3)(x+2)}$
(E) None of the above

