1.9 Rational Functions and Vertical Asymptotes

CALCULATOR ACTIVE Complete the table to answer the following.

7.
$$f(x) = \frac{x^2 - 1}{x - 4}$$

x	3.9	3.99	3.999	4	4.001	4.01	4.1
f(x)	-142.1	-1492	-14992	undefined	15008	1508	158.1

Vertical Asymptote:

Limit Notation of Vertical Asymptote:

$$x = 4$$

 $\lim_{x \to 4^-} f(x) = -\infty \qquad \lim_{x \to 4^+} f(x) = \infty$

1.9 Practice

CALCULATOR ACTIVE Complete the table to answer the following.

8.
$$f(x) = \frac{x^2 - 2x}{x + 2}$$

x -2.1 -2.01 -2.001 -2 -1.999 -1.99 -1.9
 $f(x)$ -86.1 -806 -8006 undefinded 7994 794 74.1

Vertical Asymptote:

Limit Notation of Vertical Asymptote:

x = -2 $\lim_{x \to -2^{-}} f(x) = -\infty$ $\lim_{x \to -2^{+}} f(x) = \infty$

Use the table of the rational function h to find the following. 9. t d(t)a. Find d(0) = undefined b. Find the *y*-intercept. -0.15,589 Does not exist! 37,231 -0.01-0.00196,543 c. Find $\lim_{t\to 0^-} d(t) = \infty$ d. Find $\lim_{t\to 0^+} d(t) = \infty$ -0.0001148,234 undefined 0 128,341 0.0001 e. As *t* approaches zero from the f. As *t* approaches zero from the 0.001 89,437 left the d(t)... right the d(t)... 0.01 18,235 0.1 1,455

approaches infinity

approaches infinity

1.9 Rational Functions and Vertical Asymptotes

1.9 Test Prep

Multiple Choice

11. Given the graph of f. Which of the following describes the function f?

(A) $\lim_{x \to -4^-} f(x) = -\infty$ and $\lim_{x \to -4^+} f(x) = -\infty$ (B) $\lim_{x \to -4^-} f(x) = \infty$ and $\lim_{x \to -4^+} f(x) = -\infty$ (C) $\lim_{x \to -4^-} f(x) = -\infty$ and $\lim_{x \to -4^+} f(x) = \infty$ (D) $\lim_{x \to -4^-} f(x) = \infty$ and $\lim_{x \to -4^+} f(x) = \infty$ (E) $\lim_{x \to -4} f(x) = f(0)$

Free Response

- 12. The function f is a rational function graphed in the xy-plane. The polynomial in the numerator of f has exactly one real zero at x = 3. The polynomial of the denominator of f has exactly two real zeros at both x = 3 and x = 6. The multiplicities of the zeros at x = 3 in the numerator and in the denominator are equal.
 - a. Find the domain for the graph of f.

$$(-\infty, 3) \cup (3, 6) \cup (6, \infty)$$

b. Find any holes and vertical asymptotes for the graph of f if they exist. Explain what causes the holes or vertical asymptotes.

x = 3 is a hole because the polynomial in the numerator and the polynomial in the denominator share a common factor (x - 3).

x = 6 is a vertical asymptote because of the zero in the denominator.

c. Explain how your answer from part b would change if the multiplicities of the zeros at x = 3 in the numerator and denominator were not equal?

If the multiplicity of the zero in the numerator was greater than the denominator, then there would still be a hole at x = 3. The overall graph might look different, but there is still a hole.

If the multiplicity of the zero in the denominator was greater than the numerator, then there would not be a hole at x = 3, instead there would be a vertical asymptote at x = 3.