EXAMPLE ONE:
$\log _{3} x+\log _{3}(x+7)=\log _{3} 60$

> IF
> $\log _{a} B=\log _{a} C$

THEN
$B=C$

EXAMPLE TWO:

$$
3-\log _{2}(x+7)=\log _{2} 5
$$

Solve an equation with logs and constants.

EXAMPLE THREE:

$$
3(2)^{x+2}=12
$$

Use logs to solve exponentials!

$$
\log (x+6)+3=2
$$

Use technology!!!

Up for the challenge? Try these!
Ex 5: $\ln \sqrt{x-12}=4$

Ex 6: $9\left(\frac{1}{27}\right)^{\frac{x}{3}}=81$

Ex 7: $\log (2 x+7)+\log 3=\log (x+6)$

2.13A Exponential and Logarithmic Equations and Inequalities

CALCULATOR ACTIVE. Solve each equation. Have both the exact answer and the answer rounded to three decimal places.

1. $\log _{5} x=2$
2. $\log x+\log (x-3)=1$
3. $e^{-x}=3.65$
4. $80 e^{0.045 x}=240$
5. $\log _{3}(5-2 x)=\log _{3}(3 x+1)$
6. $\ln 12=\ln (2 x+3)-\ln (x-4)$
7. $\log _{2}(3 x-52)-4=\log _{2} x$
8. $3-\log _{4}(x+3)=5$
9. $e^{2 x-1}+68=207$
10. $\log _{3} \sqrt{2 x+3}=1$
11. $\ln x+\ln (x-10)=\ln 24$
12. $3\left(2^{x+4}\right)-12=-10$

CALCULATOR ACTIVE. Solve each equation with a graphing calculator. Round to three decimal places.
13. $0.5 e^{\frac{x}{4}}=12$
15. Use the formula for continuously compounded to solve. $A=P e^{r t}$, where A is how much money we currently have, P is the principal (how much we started with), r is the interest rate and t, is the amount of time in years.

Mr. Kelly currently has $\$ 450,000$ in an investment account. He originally put in $\$ 200,000$ into the account which earns 4.5% interest. How many years has he been investing in this account?
16. Consider the functions f and g given by $f(x)=\ln (-x+8)$ and $g(x)=\ln (x+2)+\ln (x-8)$. In the $x y$-plane, what are all the x-coordinates of the points of intersection of the graphs of f and g ?
(A) $x=8$
(B) $x=-3$
(C) $\quad x=8$ and $x=-3$
(D) No Solution
17. Solve the equation $\log _{b} a+\log _{b} 5=c$ for a.
(A) $\frac{5}{b^{c}}$
(B) $5 b^{c}$
(C) $b^{c}-5$
(D) $\frac{b^{c}}{5}$
18. What are all values of x for which $\ln \left(x^{5}\right)=\ln \left(x^{3}\right)+16$?
(A) $\quad x=e^{8}$ and $x=-e^{8}$
(B) $x=-e^{8}$
(C) $x=e^{8}$
(D) $\quad x=8$ and $x=-8$

